Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Drug Discov Today ; 29(7): 104023, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38750929

RESUMEN

Marfan syndrome is a rare connective tissue disorder that causes aortic dissection-related sudden death. Current conventional treatments, beta-blockers, and type 1 angiotensin II receptor blockers are prescribed to slow down aortic aneurysm progression and delay (prophylactic) aortic surgery. However, neither of these treatments ceases aortic growth completely. This review focuses on potential alternative therapeutic leads in the field, ranging from widely used medication with beneficial effects on the aorta to experimental inhibitors with the potential to stop aortic growth in Marfan syndrome. Clinical trials are warranted to uncover their full potential.

2.
J Genet Couns ; 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38610077

RESUMEN

Rapidly evolving genomic technologies have made genetic expanded carrier screening (ECS) possible for couples considering a pregnancy. The aim of ECS is to identify couples at risk of having a child affected with a severe disorder and to facilitate their reproductive decision-making process. The ECS test we offer at our center, called BeGECS (Belgian Genetic ECS), consists of 1268 autosomal recessive (AR) and X-linked pathogenic genes, including severe childhood-onset disorders. However, thus far data are scarce regarding the actual uptake of preconception ECS in a clinical setting. Therefore, our aim was to describe the characteristics of 407 couples to whom ECS was offered at the Center for Medical Genetics of the University Hospital Ghent (CMGG). In addition, we aimed to identify their reasons for accepting or declining BeGECS. Between October 2019 and January 2023, 407 preconception couples were offered BeGECS and were asked to fill in a questionnaire after their decision. Of the 407 couples participating in the survey, 270 (66%) decided to take the test and 137 (34%) declined. We observed that age, highest education level as well as indication for consultation were statistically different between the group that accepted to take the test and the group that declined (p = 0.037). In particular, age and education level were substantially higher in the group that accepted the test. Major reasons for taking BeGECS include prevention, wishing to obtain all information possible, helping preparing their future reproductive decision and increasing their sense of control by being informed. However, couples that do not chose to take BeGECS stated that too much information would make them anxious, that the result would not change their decision to have children, that they do not want to spend money on something that will not happen and that they do not worry about their family history. These findings show that the majority of preconception couples that were offered ECS, accepted the test.

3.
Matrix Biol ; 121: 105-126, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37336269

RESUMEN

Osteogenesis imperfecta (OI) is a family of rare heritable skeletal disorders associated with dominant mutations in the collagen type I encoding genes and recessive defects in proteins involved in collagen type I synthesis and processing and in osteoblast differentiation and activity. Historically, it was believed that the OI bone phenotype was only caused by abnormal collagen type I fibrils in the extracellular matrix, but more recently it became clear that the altered bone cell homeostasis, due to mutant collagen retention, plays a relevant role in modulating disease severity in most of the OI forms and it is correlated to impaired bone cell differentiation. Despite in vitro evidence, in vivo data are missing. To better understand the physiopathology of OI, we used two zebrafish models: Chihuahua (Chi/+), carrying a dominant p.G736D substitution in the α1 chain of collagen type I, and the recessive p3h1-/-, lacking prolyl 3-hydroxylase (P3h1) enzyme. Both models share the delay of collagen type I folding, resulting in its overmodification and partial intracellular retention. The regeneration of the bony caudal fin of Chi/+ and p3h1-/- was employed to investigate the impact of abnormal collagen synthesis on bone cell differentiation. Reduced regenerative ability was evident in both models, but it was associated to impaired osteoblast differentiation and osteoblastogenesis/adipogenesis switch only in Chi/+. On the contrary, reduced osteoclast number and activity were found in both models during regeneration. The dominant OI model showed a more detrimental effect in the extracellular matrix organization. Interestingly, the chemical chaperone 4-phenylbutyrate (4-PBA), known to reduce cellular stress and increase collagen secretion, improved bone formation only in p3h1-/- by favoring caudal fin growth without affecting bone cell markers expression. Taken together, our in vivo data proved the negative impact of structurally abnormal collagen type I on bone formation but revealed a gene mutation-specific effect on bone cell differentiation and matrix organization in OI. These, together with the distinct ability to respond to the chaperone treatment, underline the need for precision medicine approaches to properly treat the disease.


Asunto(s)
Colágeno Tipo I , Osteogénesis Imperfecta , Animales , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Osteogénesis Imperfecta/genética , Osteogénesis Imperfecta/metabolismo , Osteogénesis/genética , Pez Cebra/genética , Pez Cebra/metabolismo , Colágeno/metabolismo , Chaperonas Moleculares/genética , Mutación , Diferenciación Celular
4.
J Clin Med ; 12(5)2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36902680

RESUMEN

Pseudoxanthoma elasticum (PXE) is a rare ectopic calcification disorder affecting soft connective tissues that is caused by biallelic ABCC6 mutations. While the underlying pathomechanisms are incompletely understood, reduced circulatory levels of inorganic pyrophosphate (PPi)-a potent mineralization inhibitor-have been reported in PXE patients and were suggested to be useful as a disease biomarker. In this study, we explored the relation between PPi, the ABCC6 genotype and the PXE phenotype. For this, we optimized and validated a PPi measurement protocol with internal calibration that can be used in a clinical setting. An analysis of 78 PXE patients, 69 heterozygous carriers and 14 control samples revealed significant differences in the measured PPi levels between all three cohorts, although there was overlap between all groups. PXE patients had a ±50% reduction in PPi levels compared to controls. Similarly, we found a ±28% reduction in carriers. PPi levels were found to correlate with age in PXE patients and carriers, independent of the ABCC6 genotype. No correlations were found between PPi levels and the Phenodex scores. Our results suggest that other factors besides PPi are at play in ectopic mineralization, which limits the use of PPi as a predictive biomarker for severity and disease progression.

5.
Front Endocrinol (Lausanne) ; 14: 1002914, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36755921

RESUMEN

Introduction: Trimeric intracellular potassium channels TRIC-A and -B are endoplasmic reticulum (ER) integral membrane proteins, involved in the regulation of calcium release mediated by ryanodine (RyRs) and inositol 1,4,5-trisphosphate (IP3Rs) receptors, respectively. While TRIC-A is mainly expressed in excitable cells, TRIC-B is ubiquitously distributed at moderate level. TRIC-B deficiency causes a dysregulation of calcium flux from the ER, which impacts on multiple collagen specific chaperones and modifying enzymatic activity, leading to a rare form of osteogenesis imperfecta (OI Type XIV). The relevance of TRIC-B on cell homeostasis and the molecular mechanism behind the disease are still unknown. Results: In this study, we exploited zebrafish to elucidate the role of TRIC-B in skeletal tissue. We demonstrated, for the first time, that tmem38a and tmem38b genes encoding Tric-a and -b, respectively are expressed at early developmental stages in zebrafish, but only the latter has a maternal expression. Two zebrafish mutants for tmem38b were generated by CRISPR/Cas9, one carrying an out of frame mutation introducing a premature stop codon (tmem38b-/- ) and one with an in frame deletion that removes the highly conserved KEV domain (tmem38bΔ120-7/Δ120-7 ). In both models collagen type I is under-modified and partially intracellularly retained in the endoplasmic reticulum, as described in individuals affected by OI type XIV. Tmem38b-/- showed a mild skeletal phenotype at the late larval and juvenile stages of development whereas tmem38bΔ120-7/Δ120-7 bone outcome was limited to a reduced vertebral length at 21 dpf. A caudal fin regeneration study pointed towards impaired activity of osteoblasts and osteoclasts associated with mineralization impairment. Discussion: Our data support the requirement of Tric-b during early development and for bone cell differentiation.


Asunto(s)
Canales Iónicos , Osteogénesis Imperfecta , Proteínas de Pez Cebra , Pez Cebra , Animales , Huesos/metabolismo , Calcio/metabolismo , Diferenciación Celular/genética , Canales Iónicos/genética , Osteogénesis Imperfecta/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
6.
Hum Genet ; 142(3): 457-476, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36697720

RESUMEN

Bi-allelic mutations in the gene coding for human trans-membrane anterior-posterior transformation protein 1 (TAPT1) result in a broad phenotypic spectrum, ranging from syndromic disease with severe skeletal and congenital abnormalities to isolated early-onset cataract. We present here the first patient with a frameshift mutation in the TAPT1 gene, resulting in both bilateral early-onset cataract and skeletal abnormalities, in addition to several dysmorphic features, in this way further expanding the phenotypic spectrum associated with TAPT1 mutations. A tapt1a/tapt1b double knock-out (KO) zebrafish model generated by CRISPR/Cas9 gene editing revealed an early larval phenotype with eye malformations, loss of vision, increased photokinetics and hyperpigmentation, without visible skeletal involvement. Ultrastructural analysis of the eyes showed a smaller condensed lens, loss of integrity of the lens capsule with formation of a secondary lens and hyperplasia of the cells in the ganglion and inner plexiform layers of the retina. Transcriptomic analysis pointed to an impaired lens development with aberrant expression of many of the crystallin and other lens-specific genes. Furthermore, the phototransduction and visual perception pathways were found to be significantly disturbed. Differences in light perception are likely the cause of the increased dark photokinetics and generalized hyperpigmentation observed in this zebrafish model. In conclusion, this study validates TAPT1 as a new gene for early-onset cataract and sheds light on its ultrastructural and molecular characteristics.


Asunto(s)
Catarata , Cristalino , Animales , Humanos , Catarata/genética , Cristalino/metabolismo , Mutación , Retina/metabolismo , Pez Cebra/genética , Proteínas de la Membrana/metabolismo
7.
J Biol Chem ; 298(10): 102421, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36030052

RESUMEN

Recent studies identified a missense mutation in the gene coding for G protein-coupled receptor kinase 6 (GRK6) that segregates with type 2 diabetes (T2D). To better understand how GRK6 might be involved in T2D, we used pharmacological inhibition and genetic knockdown in the mouse ß-cell line, MIN6, to determine whether GRK6 regulates insulin dynamics. We show inhibition of GRK5 and GRK6 increased insulin secretion but reduced insulin processing while GRK6 knockdown revealed these same processing defects with reduced levels of cellular insulin. GRK6 knockdown cells also had attenuated insulin secretion but enhanced proinsulin secretion consistent with decreased processing. In support of these findings, we demonstrate GRK6 rescue experiments in knockdown cells restored insulin secretion after glucose treatment. The altered insulin profile appears to be caused by changes in the proprotein convertases, the enzymes responsible for proinsulin to insulin conversion, as GRK6 knockdown resulted in significantly reduced convertase expression and activity. To identify how the GRK6-P384S mutation found in T2D patients might affect insulin processing, we performed biochemical and cell biological assays to study the properties of the mutant. We found that while GRK6-P384S was more active than WT GRK6, it displayed a cytosolic distribution in cells compared to the normal plasma membrane localization of GRK6. Additionally, GRK6 overexpression in MIN6 cells enhanced proinsulin processing, while GRK6-P384S expression had little effect. Taken together, our data show that GRK6 regulates insulin processing and secretion in a glucose-dependent manner and provide a foundation for understanding the contribution of GRK6 to T2D.


Asunto(s)
Diabetes Mellitus Tipo 2 , Quinasas de Receptores Acoplados a Proteína-G , Insulina , Proinsulina , Animales , Ratones , Diabetes Mellitus Tipo 2/genética , Glucosa/farmacología , Insulina/metabolismo , Proinsulina/genética , Proinsulina/metabolismo , Quinasas de Receptores Acoplados a Proteína-G/genética , Quinasas de Receptores Acoplados a Proteína-G/metabolismo , Línea Celular
8.
Genes (Basel) ; 13(7)2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35885997

RESUMEN

Congenital heart defects (CHD) are the most common congenital anomalies in liveborn children. In contrast to syndromic CHD (SCHD), the genetic basis of isolated CHD (ICHD) is complex, and the underlying pathogenic mechanisms appear intricate and are incompletely understood. Next to rare Mendelian conditions, somatic mosaicism or a complex multifactorial genetic architecture are assumed for most ICHD. We performed exome sequencing (ES) in 73 parent-offspring ICHD trios using proband DNA extracted from cardiac tissue. We identified six germline de novo variants and 625 germline rare inherited variants with 'damaging' in silico predictions in cardiac-relevant genes expressed in the developing human heart. There were no CHD-relevant somatic variants. Transmission disequilibrium testing (TDT) and association testing (AT) yielded no statistically significant results, except for the AT of missense variants in cilia genes. Somatic mutations are not a common cause of ICHD. Rare de novo and inherited protein-damaging variants may contribute to ICHD, possibly as part of an oligogenic or polygenic disease model. TDT and AT failed to provide informative results, likely due to the lack of power, but provided a framework for future studies in larger cohorts. Overall, the diagnostic value of ES on cardiac tissue is limited in individual ICHD cases.


Asunto(s)
Exoma , Cardiopatías Congénitas , Niño , ADN , Exoma/genética , Cardiopatías Congénitas/diagnóstico , Cardiopatías Congénitas/genética , Humanos , Mutación , Secuenciación del Exoma
9.
J Clin Med ; 11(13)2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35807012

RESUMEN

Pseudoxanthoma elasticum (PXE) is a currently intractable genetic disorder characterized by progressive ectopic calcification in the skin, eyes and arteries. Therapeutic trials in PXE are severely hampered by the lack of reliable biomarkers. Serum calcification propensity T50 is a blood test measuring the functional anticalcifying buffer capacity of serum. Here, we evaluated T50 in PXE patients aiming to investigate its determinants and suitability as a potential biomarker for disease severity. Fifty-seven PXE patients were included in this cross-sectional study, and demographic, clinical, imaging and biochemical data were collected from medical health records. PXE severity was assessed using Phenodex scores. T50 was measured using a validated, nephelometry-based assay. Multivariate models were then created to investigate T50 determinants and associations with disease severity. In short, the mean age of patients was 45.2 years, 68.4% was female and mean serum T50 was 347 min. Multivariate regression analysis identified serum fetuin-A (p < 0.001), phosphorus (p = 0.007) and magnesium levels (p = 0.034) as significant determinants of T50, while no correlations were identified with serum calcium, eGFR, plasma PPi levels or the ABCC6 genotype. After correction for covariates, T50 was found to be an independent determinant of ocular (p = 0.013), vascular (p = 0.013) and overall disease severity (p = 0.016) in PXE. To conclude, shorter serum T50­indicative of a higher calcification propensity­was associated with a more severe phenotype in PXE patients. This study indicates, for the first time, that serum T50 might be a clinically relevant biomarker in PXE and may thus be of importance to future therapeutic trials.

10.
Orphanet J Rare Dis ; 17(1): 210, 2022 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-35606766

RESUMEN

BACKGROUND: In order to facilitate the diagnostic process for adult patients suffering from a rare disease, the Undiagnosed Disease Program (UD-PrOZA) was founded in 2015 at the Ghent University Hospital in Belgium. In this study we report the five-year results of our multidisciplinary approach in rare disease diagnostics. METHODS: Patients referred by a healthcare provider, in which an underlying rare disease is likely, qualify for a UD-PrOZA evaluation. UD-PrOZA uses a multidisciplinary clinical approach combined with state-of-the-art genomic technologies in close collaboration with research facilities to diagnose patients. RESULTS: Between 2015 and 2020, 692 patients (94% adults) were referred of which 329 (48%) were accepted for evaluation. In 18% (60 of 329) of the cases a definite diagnosis was made. 88% (53 of 60) of the established diagnoses had a genetic origin. 65% (39 of 60) of the genetic diagnoses were made through whole exome sequencing (WES). The mean time interval between symptom-onset and diagnosis was 19 years. Key observations included novel genotype-phenotype correlations, new variants in known disease genes and the identification of three new disease genes. In 13% (7 of 53), identifying the molecular cause was associated with therapeutic recommendations and in 88% (53 of 60), gene specific genetic counseling was made possible. Actionable secondary findings were reported in 7% (12 of 177) of the patients in which WES was performed. CONCLUSION: UD-PrOZA offers an innovative interdisciplinary platform to diagnose rare diseases in adults with previously unexplained medical problems and to facilitate translational research.


Asunto(s)
Enfermedades Raras , Enfermedades no Diagnosticadas , Exoma , Genómica , Humanos , Enfermedades Raras/diagnóstico , Enfermedades Raras/genética , Secuenciación del Exoma
11.
Clin Chim Acta ; 532: 79-83, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35623402

RESUMEN

BACKGROUND: A hitherto undescribed form of diabetes mellitus type 2 is reported in a Flemish family. In these patients, markedly elevated gastrin levels were observed, which could not be linked to gastrointestinal symptoms. MATERIALS AND METHODS: Gel permeation chromatography was performed for gastrin, insulin, and proinsulin. Proprotein convertase subtilisin/kexin type (PCSK1 and PCSK2)] were sequenced. Whole-exome sequencing was performed on the genomic DNA extracted from leukocytes of the proband of the family. RESULTS: Gel permeation chromatography revealed that the apparent hypergastrinemia was caused by the accumulation of biologically inactive progastrin. Besides, high serum concentrations of proinsulin and intact fibroblast growth factor 23 (FGF23) were also detected. Sequencing of PCSK1 and PCSK2 genes did not reveal any mutations in these genes. Whole exome sequencing revealed a c.1150C > T (p.Pro384Ser) mutation in G protein-coupled receptor kinase 6 (GRK6), which cosegregated with the disease. Expression of the mutant enzyme in mammalian cells revealed that it was mislocalized compared to the wild-type GRK6. CONCLUSIONS: In the affected patients, prohormone processing is impaired likely due to the altered function of mutant GRK6. Delayed pro-insulin processing causes hypoglycaemia episodes a couple of hours following meals. In addition, increased plasma concentrations of progastrin and intact FGF23 in the affected individuals can be explained by incomplete processing of the precursor hormones.


Asunto(s)
Diabetes Mellitus Tipo 2 , Proinsulina , Animales , Secuencia de Bases , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/genética , Gastrinas/genética , Humanos , Mamíferos/genética , Mamíferos/metabolismo , Mutación , Proinsulina/genética , Proinsulina/metabolismo
12.
J Assist Reprod Genet ; 39(3): 609-618, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35064435

RESUMEN

PURPOSE: Providing additional insights on the efficacy of human nuclear transfer (NT). Here, and earlier, NT has been applied to minimize transmission risk of mitochondrial DNA (mtDNA) diseases. NT has also been proposed for treating infertility, but it is still unclear which infertility indications would benefit. In this work, we therefore additionally assess the applicability of NT to overcome failed fertilization. METHODS: Patient 1 carries a homoplasmic mtDNA mutation (m.11778G > A). Seventeen metaphase II (MII) oocytes underwent pre-implantation genetic testing (PGT), while five MII oocytes were used for spindle transfer (ST), and one in vitro matured (IVM) metaphase I oocyte underwent early pronuclear transfer (ePNT). Patients 2-3 experienced multiple failed intracytoplasmic sperm injection (ICSI) and ICSI-assisted oocyte activation (AOA) cycles. For these patients, the obtained MII oocytes underwent an additional ICSI-AOA cycle, while the IVM oocytes were subjected to ST. RESULTS: For patient 1, PGT-M confirmed mutation loads close to 100%. All ST-reconstructed oocytes fertilized and cleaved, of which one progressed to the blastocyst stage. The reconstructed ePNT-zygote reached the morula stage. These samples showed an average mtDNA carry-over rate of 2.9% ± 0.8%, confirming the feasibility of NT to reduce mtDNA transmission. For patient 2-3 displaying fertilization failure, ST resulted in, respectively, 4/5 and 6/6 fertilized oocytes, providing evidence, for the first time, that NT can enable successful fertilization in this patient population. CONCLUSION: Our study showcases the repertoire of disorders for which NT can be beneficial, to overcome either mitochondrial disease transmission or failed fertilization after ICSI-AOA.


Asunto(s)
Infertilidad , Enfermedades Mitocondriales , ADN Mitocondrial/genética , Fertilización , Fertilización In Vitro/métodos , Humanos , Infertilidad/genética , Infertilidad/terapia , Oocitos , Inyecciones de Esperma Intracitoplasmáticas
13.
J Med Genet ; 59(5): 496-504, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-33820832

RESUMEN

BACKGROUND: Biallelic pathogenic variants in the ATP-binding cassette subfamily C member 6 (ABCC6) gene cause pseudoxanthoma elasticum, a multisystemic ectopic calcification disorder, while heterozygous ABCC6 variants are associated with an increased risk of cardiovascular and cerebrovascular disease. As the prevalence of pathogenic ABCC6 variants in the general population is estimated at ~1%, identifying additional ABCC6-related (sub)clinical manifestations in heterozygous carriers is of the utmost importance to reduce this burden of disease. Here, we present a large Belgian cohort of heterozygous ABCC6 carriers with comprehensive clinical, biochemical and imaging data. Based on these results, we formulate clinical practice guidelines regarding screening, preventive measures and follow-up of ABCC6 carriers. METHODS: The phenotype of 56 individuals carrying heterozygous pathogenic ABCC6 variants was assessed using clinical (eg, detailed ophthalmological examinations), biochemical, imaging (eg, cardiovascular and abdominal ultrasound) and genetic data. Clinical practice guidelines were then drawn up. RESULTS: We found that ABCC6 heterozygosity is associated with distinct retinal alterations ('comet-like') (24%), high prevalence of hypercholesterolaemia (>75%) and diastolic dysfunction (33%), accelerated lower limb atherosclerosis and medial vascular disease, abdominal organ calcification (26%) and testicular microlithiasis (28%), though with highly variable expression. CONCLUSION: In this study, we delineated the multisystemic ABCC6 heterozygosity phenotype characterised by retinal alterations, aberrant lipid metabolism, diastolic dysfunction and increased vascular, abdominal and testicular calcifications. Our clinical practice guidelines aimed to improve early diagnosis, treatment and follow-up of ABCC6-related health problems.


Asunto(s)
Seudoxantoma Elástico , Bélgica/epidemiología , Estudios de Cohortes , Heterocigoto , Humanos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Fenotipo , Seudoxantoma Elástico/diagnóstico , Seudoxantoma Elástico/epidemiología , Seudoxantoma Elástico/genética
14.
J Invest Dermatol ; 142(6): 1629-1638.e6, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34742705

RESUMEN

Pseudoxanthoma elasticum (PXE) is a hereditary ectopic calcification disorder affecting the skin, eyes, and blood vessels. Recently, the DNA damage response (DDR), in particular PARP1, was shown to be involved in aberrant mineralization, raising the hypothesis that excessive DDR/PARP1 signaling also contributes to PXE pathogenesis. Using dermal fibroblasts of patients with PXE and healthy controls, (lesional) skin tissue, and abcc6a‒/‒ zebrafish, we performed expression analysis of DDR/PARP1 targets with QRT-PCR, western blot, immunohistochemistry, and enzyme activity assays before and after treatment with the PARP1 inhibitor minocycline. PARP1 and the ATM‒p21‒p53 axis was found to be significantly increased in PXE. In addition, PARP1 downstream targets IL-6, signal transducer and activator of transcription 1/3, TET1, and RUNX2 were upregulated, whereas the RUNX2 antagonist microRNA-204 was decreased. In PXE fibroblasts, DDR/PARP1 signaling increased with advancing ectopic calcification. Minocycline treatment attenuated DDR/PARP1 overexpression and reduced aberrant mineralization in PXE fibroblasts and abcc6a‒/‒ zebrafish. In summary, we showed the involvement of excessive DDR/PARP1 signaling in PXE pathophysiology, identifying a signal transducer and activator of transcription‒driven cascade resulting in increased expression of the epigenetic modifier TET1 and procalcifying transcription factor RUNX2. Minocycline attenuated this deleterious molecular mechanism and reduced ectopic calcification both in vitro and in vivo, fueling the exciting prospect of a therapeutic compound for PXE.


Asunto(s)
MicroARNs , Seudoxantoma Elástico , Transportadoras de Casetes de Unión a ATP/genética , Animales , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Daño del ADN , Humanos , Minociclina/farmacología , Minociclina/uso terapéutico , Oxigenasas de Función Mixta/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Proteínas Proto-Oncogénicas/metabolismo , Seudoxantoma Elástico/tratamiento farmacológico , Seudoxantoma Elástico/genética , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
15.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34789568

RESUMEN

Cancer precision medicine implies identification of tumor-specific vulnerabilities associated with defined oncogenic pathways. Desmoid tumors are soft-tissue neoplasms strictly driven by Wnt signaling network hyperactivation. Despite this clearly defined genetic etiology and the strict and unique implication of the Wnt/ß-catenin pathway, no specific molecular targets for these tumors have been identified. To address this caveat, we developed fast, efficient, and penetrant genetic Xenopus tropicalis desmoid tumor models to identify and characterize drug targets. We used multiplexed CRISPR/Cas9 genome editing in these models to simultaneously target a tumor suppressor gene (apc) and candidate dependency genes. Our methodology CRISPR/Cas9 selection-mediated identification of dependencies (CRISPR-SID) uses calculated deviations between experimentally observed gene editing outcomes and deep-learning-predicted double-strand break repair patterns to identify genes under negative selection during tumorigenesis. This revealed EZH2 and SUZ12, both encoding polycomb repressive complex 2 components, and the transcription factor CREB3L1 as genetic dependencies for desmoid tumors. In vivo EZH2 inhibition by Tazemetostat induced partial regression of established autochthonous tumors. In vitro models of patient desmoid tumor cells revealed a direct effect of Tazemetostat on Wnt pathway activity. CRISPR-SID represents a potent approach for in vivo mapping of tumor vulnerabilities and drug target identification.


Asunto(s)
Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/aislamiento & purificación , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Edición Génica/métodos , Neoplasias Abdominales/genética , Poliposis Adenomatosa del Colon/genética , Animales , Carcinogénesis/genética , Línea Celular Tumoral , Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Fibromatosis Agresiva/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas del Tejido Nervioso , Oncogenes , Complejo Represivo Polycomb 2/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Vía de Señalización Wnt , Xenopus , beta Catenina
16.
Genes (Basel) ; 12(7)2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34356064

RESUMEN

Copy number variations (CNVs) can modulate phenotypes by affecting protein-coding sequences directly or through interference of gene expression. Recent studies in cancer and limb defects pinpointed the relevance of non-coding gene regulatory elements such as long non-coding RNAs (lncRNAs) and topologically associated domain (TAD)-related gene-enhancer interactions. The contribution of such non-coding elements is largely unexplored in congenital heart defects (CHD). We performed a retrospective analysis of CNVs reported in a cohort of 270 CHD patients. We reviewed the diagnostic yield of pathogenic CNVs, and performed a comprehensive reassessment of 138 CNVs of unknown significance (CNV-US), evaluating protein-coding genes, lncRNA genes, and potential interferences with TAD-related gene-enhancer interactions. Fifty-two of the 138 CNV-US may relate to CHD, revealing three candidate CHD regions, 19 candidate CHD genes, 80 lncRNA genes of interest, and six potentially CHD-related TAD interferences. Our study thus indicates a potential relevance of non-coding gene regulatory elements in CNV-related CHD pathogenesis. Shortcomings in our current knowledge on genomic variation call for continuous reporting of CNV-US in international databases, careful patient counseling, and additional functional studies to confirm these preliminary findings.


Asunto(s)
Aberraciones Cromosómicas , Variaciones en el Número de Copia de ADN , Predisposición Genética a la Enfermedad , Genoma Humano , Cardiopatías Congénitas/patología , Niño , Femenino , Estudios de Asociación Genética , Cardiopatías Congénitas/genética , Humanos , Masculino , Fenotipo , Estudios Retrospectivos
17.
J Genet Genomics ; 48(4): 289-299, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-34049798

RESUMEN

Pseudogenes are frequently encountered noncoding sequences with a high sequence similarity to their protein-coding paralogue. For this reason, their presence is often considered troublesome in molecular diagnostics. In pseudoxanthoma elasticum (PXE), a disease predominantly caused by mutations in ATP-binding cassette family C member 6 (ABCC6), the presence of two pseudogenes complicates the analysis of sequence data. With whole-exome sequencing (WES) becoming the standard of care in molecular diagnostics, we wanted to evaluate whether this technique is as reliable as gene-specific targeted enrichment analysis for the analysis of ABCC6. We established a PCR-based targeted enrichment and next-generation sequencing testing approach and demonstrated that the ABCC6-specific enrichment combined with the applied mapping algorithm overcomes the complication of ABCC6 pseudogene aspecificities, contrary to WES. We propose a time- and cost-efficient diagnostic strategy for comprehensive and accurate molecular genetic testing of PXE, which is highly automatable.


Asunto(s)
Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Patología Molecular , Seudogenes/genética , Seudoxantoma Elástico/genética , Alelos , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/sangre , Mutación/genética , Linaje , Seudoxantoma Elástico/sangre , Seudoxantoma Elástico/patología , Secuenciación del Exoma
18.
J Bone Miner Res ; 36(9): 1749-1764, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33957005

RESUMEN

Genomewide association studies (GWAS) have improved our understanding of the genetic architecture of common complex diseases such as osteoporosis. Nevertheless, to attribute functional skeletal contributions of candidate genes to osteoporosis-related traits, there is a need for efficient and cost-effective in vivo functional testing. This can be achieved through CRISPR-based reverse genetic screens, where phenotyping is traditionally performed in stable germline knockout (KO) mutants. Recently it was shown that first-generation (F0) mosaic mutant zebrafish (so-called crispants) recapitulate the phenotype of germline KOs. To demonstrate feasibility of functional validation of osteoporosis candidate genes through crispant screening, we compared a crispant to a stable KO zebrafish model for the lrp5 gene. In humans, recessive loss-of-function mutations in LRP5, a co-receptor in the Wnt signaling pathway, cause osteoporosis-pseudoglioma syndrome. In addition, several GWAS studies identified LRP5 as a major risk locus for osteoporosis-related phenotypes. In this study, we showed that early stage lrp5 KO larvae display decreased notochord mineralization and malformations of the head cartilage. Quantitative micro-computed tomography (micro-CT) scanning and mass-spectrometry element analysis of the adult skeleton revealed decreased vertebral bone volume and bone mineralization, hallmark features of osteoporosis. Furthermore, regenerating fin tissue displayed reduced Wnt signaling activity in lrp5 KO adults. We next compared lrp5 mutants with crispants. Next-generation sequencing analysis of adult crispant tissue revealed a mean out-of-frame mutation rate of 76%, resulting in strongly reduced levels of Lrp5 protein. These crispants generally showed a milder but nonetheless highly comparable skeletal phenotype and a similarly reduced Wnt pathway response compared with lrp5 KO mutants. In conclusion, we show through faithful modeling of LRP5-related primary osteoporosis that crispant screening in zebrafish is a promising approach for rapid functional screening of osteoporosis candidate genes. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Proteína-5 Relacionada con Receptor de Lipoproteína de Baja Densidad , Osteoporosis , Pez Cebra , Animales , Densidad Ósea , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Modelos Animales de Enfermedad , Humanos , Proteína-5 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Osteoporosis/diagnóstico por imagen , Osteoporosis/genética , Genética Inversa , Vía de Señalización Wnt , Microtomografía por Rayos X , Pez Cebra/genética
19.
Zebrafish ; 18(1): 29-41, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33428527

RESUMEN

The popularity of zebrafish in both basic biological and biomedical research has led to an increased need for understanding their behavior. Locomotor behavior is an important outcome of different factors, such as specific genotypes or external stimuli that influence the nervous and musculoskeletal system. Locomotion can be studied by forced swimming in a swim tunnel, a device capable of generating a laminar water flow at different speeds in a chamber where zebrafish can be placed. However, commercially available swim tunnels are relatively expensive and in-house built systems are mostly presented without clear building instructions or proper validation procedures. In this study, we developed an alternative, cheap (<250 euro), and user-friendly, but customizable benchtop swim tunnel, called the "Zebrafish exercise-tunnel" (ZE-Tunnel). Detailed step-by-step instructions on how to construct the tunnel components, including the frame, mechanical, and electric components are given. The ZE-Tunnel was reliably used to exercise fish for prolonged periods and its performance was successfully validated by replicating previously published experiments on critical speed testing in zebrafish. Finally, implementation of behavioral video analysis using freely available motion-tracking software showed differences in swimming dynamics in the Chihuahua skeletal zebrafish mutant.


Asunto(s)
Ciencia de los Animales de Laboratorio/instrumentación , Condicionamiento Físico Animal , Natación , Pez Cebra/fisiología , Animales , Etología/instrumentación
20.
J Fish Biol ; 98(4): 1007-1017, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32242924

RESUMEN

One of the most frequently applied techniques in zebrafish (Danio rerio) research is the visualisation or manipulation of specific cell populations using transgenic reporter lines. The generation of these transgenic zebrafish, displaying cell- or tissue-specific expression of frequently used fluorophores such as Green Fluorescent Protein (GFP) or mCherry, is relatively easy using modern techniques. Fluorophores with different emission wavelengths and driven by different promoters can be monitored simultaneously in the same animal. Photoconvertible fluorescent proteins (pcFPs) are different from these standard fluorophores because their emission spectrum is changed when exposed to UV light, a process called photoconversion. Here, the benefits and versatility of using pcFPs for both single and dual fluorochrome imaging in zebrafish skeletal research in a previously generated osx:Kaede transgenic line are illustrated. In this line, Kaede, which is expressed under control of the osterix, otherwise known as sp7, promoter thereby labelling immature osteoblasts, can switch from green to red fluorescence upon irradiation with UV light. First, this study demonstrates that osx:Kaede exhibits an expression pattern similar to a previously described osx:nuGFP transgenic line in both larval and adult stages, hereby validating the use of this line for the imaging of immature osteoblasts. More in-depth experiments highlight different applications for osx:Kaede, such as lineage tracing and its combined use with in vivo skeletal staining and other transgenic backgrounds. Mineral staining in combination with osx:Kaede confirms osteoblast-independent mineralisation of the notochord. Osteoblast lineage tracing reveals migration and dedifferentiation of scleroblasts during fin regeneration. Finally, this study shows that combining two transgenics, osx:Kaede and osc:GFP, with similar emission wavelengths is possible when using a pcFP such as Kaede.


Asunto(s)
Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Imagen Óptica , Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Colorantes Fluorescentes/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA