Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Redox Biol ; 55: 102406, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35964341

RESUMEN

Preeclampsia (PE) is a high-prevalence pregnancy disease characterized by placental insufficiency, gestational hypertension, and proteinuria. Overexpression of the A isoform of the STOX1 transcription factor (STOX1A) recapitulates PE in mice, and STOX1A overexpressing trophoblasts recapitulate PE patients hallmarks in terms of gene expression and pathophysiology. STOX1 overexpression induces nitroso-redox imbalance and mitochondrial hyper-activation. Here, by a thorough analysis on cell models, we show that STOX1 overexpression in trophoblasts alters inducible nitric oxide synthase (iNOS), nitric oxide (NO) content, the nitroso-redox balance, the antioxidant defense, and mitochondrial function. This is accompanied by specific alterations of the Krebs cycle leading to reduced l-malate content. By increasing NOS coupling using the metabolite tetrahydrobiopterin (BH4) we restore this multi-step pathway in vitro. Moving in vivo on two different rodent models (STOX1 mice and RUPP rats, alike early onset and late onset preeclampsia, respectively), we show by transcriptomics that BH4 directly reverts STOX1-deregulated gene expression including glutathione metabolism, oxidative phosphorylation, cholesterol metabolism, inflammation, lipoprotein metabolism and platelet activation, successfully treating placental hypotrophy, gestational hypertension, proteinuria and heart hypertrophy. In the RUPP rats we show that the major fetal issue of preeclampsia, Intra Uterine Growth Restriction (IUGR), is efficiently corrected. Our work posits on solid bases BH4 as a novel potential therapy for preeclampsia.

2.
iScience ; 23(5): 101086, 2020 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-32371375

RESUMEN

STOX1 is a transcription factor involved in preeclampsia and Alzheimer disease. We show that the knock-down of the gene induces rather mild effect on gene expression in trophoblast cell lines (BeWo). We identified binding sites of STOX1 shared by the two major isoforms, STOX1A and STOX1B. Profiling gene expression of cells overexpressing either STOX1A or STOX1B, we identified genes downregulated by both isoforms, with a STOX1 binding site in their promoters. Among those, STOX1-induced Annexin A1 downregulation led to abolished membrane repair in BeWo cells. By contrast, overexpression of STOX1A or B has opposite effects on trophoblast fusion (acceleration and inhibition, respectively) accompanied by syncytin genes deregulation. Also, STOX1A overexpression led to abnormal regulation of oxidative and nitrosative stress. In sum, our work shows that STOX1 isoform imbalance is a cause of gene expression deregulation in the trophoblast, possibly leading to placental dysfunction and preeclampsia.

3.
Sci Rep ; 6: 19196, 2016 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-26758611

RESUMEN

Preeclampsia is a disease of pregnancy involving systemic endothelial dysfunction. However, cardiovascular consequences of preeclampsia are difficult to analyze in humans. The objective of the present study is to evaluate the cardiovascular dysfunction induced by preeclampsia by examining the endothelium of mice suffering of severe preeclampsia induced by STOX1 overexpression. Using Next Generation Sequencing on endothelial cells of mice carrying either transgenic or control embryos, we discovered significant alterations of gene networks involved in inflammation, cell cycle, and cardiac hypertrophy. In addition, the heart of the preeclamptic mice revealed cardiac hypertrophy associated with histological anomalies. Bioinformatics comparison of the networks of modified genes in the endothelial cells of the preeclamptic mice and HUVECs exposed to plasma from preeclamptic women identified striking similarities. The cardiovascular alterations in the pregnant mice are comparable to those endured by the cardiovascular system of preeclamptic women. The STOX1 mice could help to better understand the endothelial dysfunction in the context of preeclampsia, and guide the search for efficient therapies able to protect the maternal endothelium during the disease and its aftermath.


Asunto(s)
Cardiomegalia/etiología , Proteínas Portadoras/genética , Células Endoteliales/metabolismo , Preeclampsia/genética , Preeclampsia/metabolismo , Animales , Cardiomegalia/patología , Proteínas Portadoras/metabolismo , Línea Celular , Análisis por Conglomerados , Modelos Animales de Enfermedad , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Ratones , Ratones Transgénicos , Preeclampsia/mortalidad , Embarazo , Unión Proteica , Mapeo de Interacción de Proteínas , Mapas de Interacción de Proteínas , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...