RESUMEN
To meet the high energy demands of brain function, cerebral blood flow (CBF) parallels changes in neuronal activity by a mechanism known as neurovascular coupling (NVC). However, which neurons play a role in mediating NVC is not well understood. Here, we identify in mice and humans a specific population of cortical GABAergic neurons that co-express neuronal nitric oxide synthase and tachykinin receptor 1 (Tacr1). Through whole-tissue clearing, we demonstrate that Tacr1 neurons extend local and long-range projections across functionally connected cortical areas. We show that whisker stimulation elicited Tacr1 neuron activity in the barrel cortex through feedforward excitatory pathways. Additionally, through optogenetic experiments, we demonstrate that Tacr1 neurons are instrumental in mediating CBF through the relaxation of mural cells in a similar fashion to whisker stimulation. Finally, by electron microscopy, we observe that Tacr1 processes contact astrocytic endfeet. These findings suggest that Tacr1 neurons integrate cortical activity to mediate NVC.
Asunto(s)
Acoplamiento Neurovascular , Animales , Ratones , Acoplamiento Neurovascular/fisiología , Humanos , Neuronas/metabolismo , Neuronas/fisiología , Vibrisas/fisiología , Ratones Endogámicos C57BL , Neuronas GABAérgicas/metabolismo , Neuronas GABAérgicas/fisiología , Masculino , Corteza Cerebral/fisiología , Corteza Cerebral/irrigación sanguínea , Circulación Cerebrovascular/fisiología , Óxido Nítrico Sintasa de Tipo I/metabolismoRESUMEN
Sparse populations of neurons in the dentate gyrus (DG) of the hippocampus are causally implicated in the encoding of contextual fear memories. However, engram-specific molecular mechanisms underlying memory consolidation remain largely unknown. Here we perform unbiased RNA sequencing of DG engram neurons 24 h after contextual fear conditioning to identify transcriptome changes specific to memory consolidation. DG engram neurons exhibit a highly distinct pattern of gene expression, in which CREB-dependent transcription features prominently (P = 6.2 × 10-13), including Atf3 (P = 2.4 × 10-41), Penk (P = 1.3 × 10-15), and Kcnq3 (P = 3.1 × 10-12). Moreover, we validate the functional relevance of the RNAseq findings by establishing the causal requirement of intact CREB function specifically within the DG engram during memory consolidation, and identify a novel group of CREB target genes involved in the encoding of long-term memory.
Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteínas del Citoesqueleto/metabolismo , Giro Dentado/fisiología , Consolidación de la Memoria/fisiología , Proteínas del Tejido Nervioso/metabolismo , Factor de Transcripción Activador 3/genética , Factor de Transcripción Activador 3/metabolismo , Animales , Condicionamiento Psicológico/fisiología , Giro Dentado/citología , Encefalinas/genética , Encefalinas/metabolismo , Miedo/fisiología , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica/fisiología , Canal de Potasio KCNQ3/genética , Canal de Potasio KCNQ3/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Animales , Neuronas/metabolismo , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Análisis de Secuencia de ARN , Técnicas EstereotáxicasRESUMEN
In the original version of this Article, support provided during initiation of the project was not fully acknowledged. The PDF and HTML versions of the Article have now been corrected to include support from Karel Svoboda, members of the Svoboda lab, and members of Janelia's Vivarium staff.
RESUMEN
A variety of inhibitory pathways encompassing different interneuron types shape activity of neocortical pyramidal neurons. While basket cells (BCs) mediate fast lateral inhibition between pyramidal neurons, Somatostatin-positive Martinotti cells (MCs) mediate a delayed form of lateral inhibition. Neocortical circuits are under control of acetylcholine, which is crucial for cortical function and cognition. Acetylcholine modulates MC firing, however, precisely how cholinergic inputs affect cortical lateral inhibition is not known. Here, we find that cholinergic inputs selectively augment and speed up lateral inhibition between pyramidal neurons mediated by MCs, but not by BCs. Optogenetically activated cholinergic inputs depolarize MCs through activation of ß2 subunit-containing nicotinic AChRs, not muscarinic AChRs, without affecting glutamatergic inputs to MCs. We find that these mechanisms are conserved in human neocortex. Cholinergic inputs thus enable cortical pyramidal neurons to recruit more MCs, and can thereby dynamically highlight specific circuit motifs, favoring MC-mediated pathways over BC-mediated pathways.
Asunto(s)
Neuronas Colinérgicas/fisiología , Interneuronas/fisiología , Neocórtex/fisiología , Inhibición Neural , Células Piramidales/fisiología , Adulto , Animales , Femenino , Humanos , Masculino , Ratones Endogámicos C57BL , Persona de Mediana EdadRESUMEN
The striatum shows general topographic organization and regional differences in behavioral functions. How corticostriatal topography differs across cortical areas and cell types to support these distinct functions is unclear. This study contrasted corticostriatal projections from two layer 5 cell types, intratelencephalic (IT-type) and pyramidal tract (PT-type) neurons, using viral vectors expressing fluorescent reporters in Cre-driver mice. Corticostriatal projections from sensory and motor cortex are somatotopic, with a decreasing topographic specificity as injection sites move from sensory to motor and frontal areas. Topographic organization differs between IT-type and PT-type neurons, including injections in the same site, with IT-type neurons having higher topographic stereotypy than PT-type neurons. Furthermore, IT-type projections from interconnected cortical areas have stronger correlations in corticostriatal targeting than PT-type projections do. As predicted by a longstanding model, corticostriatal projections of interconnected cortical areas form parallel circuits in the basal ganglia.
Asunto(s)
Cuerpo Estriado/anatomía & histología , Corteza Motora/anatomía & histología , Neuronas/citología , Corteza Somatosensorial/anatomía & histología , Animales , Ganglios Basales/anatomía & histología , Ganglios Basales/fisiología , Mapeo Encefálico , Corteza Cerebral/anatomía & histología , Corteza Cerebral/fisiología , Cuerpo Estriado/fisiología , Ratones , Modelos Neurológicos , Corteza Motora/fisiología , Vías Nerviosas , Neuronas/fisiología , Tractos Piramidales/citología , Corteza Somatosensorial/fisiologíaRESUMEN
The hippocampal region contains several principal neuron types, some of which show distinct spatial firing patterns. The region is also known for its diversity in neural circuits and many have attempted to causally relate network architecture within and between these unique circuits to functional outcome. Still, much is unknown about the mechanisms or network properties by which the functionally specific spatial firing profiles of neurons are generated, let alone how they are integrated into a coherently functioning meta-network. In this review, we explore the architecture of local networks and address how they may interact within the context of an overarching space circuit, aiming to provide directions for future successful explorations.
Asunto(s)
Hipocampo/anatomía & histología , Red Nerviosa/anatomía & histología , Neuronas/fisiología , Percepción Espacial/fisiología , Hipocampo/citología , Hipocampo/fisiología , Humanos , Red Nerviosa/fisiologíaRESUMEN
The mammalian space circuit is known to contain several functionally specialized cell types, such as place cells in the hippocampus and grid cells, head-direction cells and border cells in the medial entorhinal cortex (MEC). The interaction between the entorhinal and hippocampal spatial representations is poorly understood, however. We have developed an optogenetic strategy to identify functionally defined cell types in the MEC that project directly to the hippocampus. By expressing channelrhodopsin-2 (ChR2) selectively in the hippocampus-projecting subset of entorhinal projection neurons, we were able to use light-evoked discharge as an instrument to determine whether specific entorhinal cell groups--such as grid cells, border cells and head-direction cells--have direct hippocampal projections. Photoinduced firing was observed at fixed minimal latencies in all functional cell categories, with grid cells as the most abundant hippocampus-projecting spatial cell type. We discuss how photoexcitation experiments can be used to distinguish the subset of hippocampus-projecting entorhinal neurons from neurons that are activated indirectly through the network. The functional breadth of entorhinal input implied by this analysis opens up the potential for rich dynamic interactions between place cells in the hippocampus and different functional cell types in the entorhinal cortex (EC).
Asunto(s)
Potenciales de Acción/fisiología , Corteza Entorrinal/fisiología , Hipocampo/fisiología , Neuronas/fisiología , Animales , Channelrhodopsins , Corteza Entorrinal/citología , Hipocampo/citología , Vías Nerviosas/fisiología , Fotoquímica/métodos , RatasRESUMEN
Principal cells in layer V of the medial entorhinal cortex (MEC) have a nodal position in the cortical-hippocampal network. They are the main recipients of hippocampal output and receive inputs from several cortical areas, including a prominent one from the retrosplenial cortex (RSC), likely targeting basal dendrites of layer V neurons. The latter project to extrahippocampal structures but also relay information to the superficial layers of MEC, closing the hippocampal-entorhinal loop. In the rat, we electrophysiologically and morphologically characterized RSC input into MEC and conclude that RSC provides an excitatory input to layer V pyramidal cells. Ultrastructural analyses of anterogradely labeled RSC projections showed that RSC axons in layer V of MEC form predominantly asymmetrical, likely excitatory, synapses on dendritic spines (90%) or shafts (8%), with 2% symmetrical, likely inhibitory, synapses on shafts and spines. The overall excitatory nature of the RSC input was confirmed by an optogenetic approach. Patterned laser stimulation of channelrhodopsin-expressing presynaptic RSC axons evoked exclusively EPSPs in recorded postsynaptic layer V cells. All responding layer V pyramidal cells had an axon extending toward the white matter. Half of these neurons also sent an axon to superficial layers. Confocal imaging of RSC synapses onto MEC layer V neurons shown to project superficially by way of retrogradely labeling from superficial layers confirmed that proximal dendrites of superficially projecting cells are among the targets of inputs from RSC. The excitatory RSC input thus interacts with both entorhinal-cortical and entorhinal-hippocampal circuits.
Asunto(s)
Axones/fisiología , Corteza Entorrinal/fisiología , Giro del Cíngulo/fisiología , Neuronas/fisiología , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Animales , Axones/ultraestructura , Dendritas/fisiología , Dendritas/ultraestructura , Corteza Entorrinal/ultraestructura , Femenino , Giro del Cíngulo/ultraestructura , Hipocampo/fisiología , Hipocampo/ultraestructura , Vías Nerviosas/fisiología , Vías Nerviosas/ultraestructura , Neuronas/ultraestructura , Ratas , Ratas Sprague-Dawley , Sinapsis/ultraestructuraRESUMEN
Grid cells in layer II of the medial entorhinal cortex form a principal component of the mammalian neural representation of space. The firing pattern of a single grid cell has been hypothesized to be generated through attractor dynamics in a network with a specific local connectivity including both excitatory and inhibitory connections. However, experimental evidence supporting the presence of such connectivity among grid cells in layer II is limited. Here we report recordings from more than 600 neuron pairs in rat entorhinal slices, demonstrating that stellate cells, the principal cell type in the layer II grid network, are mainly interconnected via inhibitory interneurons. Using a model attractor network, we demonstrate that stable grid firing can emerge from a simple recurrent inhibitory network. Our findings thus suggest that the observed inhibitory microcircuitry between stellate cells is sufficient to generate grid-cell firing patterns in layer II of the medial entorhinal cortex.
Asunto(s)
Potenciales de Acción/fisiología , Corteza Entorrinal/fisiología , Red Nerviosa/fisiología , Inhibición Neural/fisiología , Neuronas/fisiología , Animales , Corteza Entorrinal/citología , Femenino , Interneuronas/fisiología , Red Nerviosa/citología , Neuronas/citología , Técnicas de Placa-Clamp , Ratas , Ratas Long-Evans , Transmisión Sináptica/fisiologíaRESUMEN
In the adult brain, space and orientation are represented by an elaborate hippocampal-parahippocampal circuit consisting of head-direction cells, place cells, and grid cells. We report that a rudimentary map of space is already present when 2 1/2-week-old rat pups explore an open environment outside the nest for the first time. Head-direction cells in the pre- and parasubiculum have adultlike properties from the beginning. Place and grid cells are also present but evolve more gradually. Grid cells show the slowest development. The gradual refinement of the spatial representation is accompanied by an increase in network synchrony among entorhinal stellate cells. The presence of adultlike directional signals at the onset of navigation raises the possibility that such signals are instrumental in setting up networks for place and grid representation.
Asunto(s)
Región CA1 Hipocampal/fisiología , Corteza Entorrinal/fisiología , Neuronas/fisiología , Giro Parahipocampal/fisiología , Percepción Espacial , Conducta Espacial , Potenciales de Acción , Envejecimiento , Animales , Mapeo Encefálico , Electrodos Implantados , Corteza Entorrinal/citología , Conducta Exploratoria , Femenino , Masculino , Red Nerviosa/fisiología , Vías Nerviosas , Orientación , Giro Parahipocampal/citología , Técnicas de Placa-Clamp , Ratas , Ratas Long-EvansRESUMEN
Nicotine enhances cognitive performance in humans and laboratory animals. The immediate positive actions of nicotine on learning, memory and attention are well-documented. Several brain areas involved in cognition, such as the prefrontal cortex, have been implicated. Besides acute effects on these brain areas and on brain function, a picture is emerging showing that long-term consequences of nicotine exposure during adolescence can be detrimental for cognitive performance. The majority of adult smokers started the habit during adolescence. Our knowledge on the types of nicotinic receptors in the brain areas that are candidates for mediating nicotine's effects is increasing. However, much less is known about the underlying cellular mechanisms. A series of recent studies have uncovered exciting features of the mechanisms by which nicotine alters prefrontal cortex neuronal activity, synaptic plasticity, gene expression and cognitive function, and how these changes may have a lasting effect on the developing brain. In this review, we discuss these exciting findings and identify several common principles by which nicotinic receptor activation modulates cortical circuits involved in cognition. Understanding how nicotine induces long-term changes in neuronal circuits and alters plasticity in the prefrontal cortex is essential to determining how these mechanisms interact to alter cognition.
Asunto(s)
Corteza Cerebral/efectos de los fármacos , Cognición/efectos de los fármacos , Red Nerviosa/efectos de los fármacos , Neuronas/efectos de los fármacos , Nicotina/farmacología , Agonistas Nicotínicos/farmacología , Receptores Nicotínicos/fisiología , Adolescente , Animales , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/fisiología , Expresión Génica , Humanos , Interneuronas/fisiología , Red Nerviosa/fisiología , Plasticidad Neuronal/efectos de los fármacos , Neuronas/fisiología , Nicotina/efectos adversos , Agonistas Nicotínicos/efectos adversos , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/crecimiento & desarrollo , Corteza Prefrontal/fisiología , Sinapsis/fisiología , Tálamo/efectos de los fármacos , Tálamo/fisiologíaRESUMEN
Nicotine enhances attention and working memory by activating nicotinic acetylcholine receptors (nAChRs). The prefrontal cortex (PFC) is critical for these cognitive functions and is also rich in nAChR expression. Specific cellular and synaptic mechanisms underlying nicotine's effects on cognition remain elusive. Here we show that nicotine exposure increases the threshold for synaptic spike-timing-dependent potentiation (STDP) in layer V pyramidal neurons of the mouse PFC. During coincident presynaptic and postsynaptic activity, nicotine reduces dendritic calcium signals associated with action potential propagation by enhancing GABAergic transmission. This results from a series of presynaptic actions involving different PFC interneurons and multiple nAChR subtypes. Pharmacological block of nAChRs or GABA(A) receptors prevented nicotine's actions and restored STDP, as did increasing dendritic calcium signals with stronger postsynaptic activity. Thus, by activating nAChRs distributed throughout the PFC neuronal network, nicotine affects PFC information processing and storage by increasing the amount of postsynaptic activity necessary to induce STDP.
Asunto(s)
Potenciales de Acción/efectos de los fármacos , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Nicotina/farmacología , Agonistas Nicotínicos/farmacología , Corteza Prefrontal/citología , Animales , Animales Recién Nacidos , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/fisiología , Interacciones Farmacológicas , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Antagonistas del GABA/farmacología , Técnicas In Vitro , Ratones , Ratones Endogámicos C57BL , Modelos Neurológicos , Red Nerviosa/efectos de los fármacos , Red Nerviosa/fisiología , Plasticidad Neuronal/efectos de los fármacos , Neuronas/clasificación , Tiempo de Reacción/efectos de los fármacos , Tiempo de Reacción/fisiología , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodosRESUMEN
In adult primary visual cortex (V1), dendritic spines are more persistent than during development. Brain-derived neurotrophic factor (BDNF) increases synaptic strength, and its levels rise during cortical development. We therefore asked whether postsynaptic BDNF signaling through its receptor TrkB regulates spine persistence in adult V1. This question has been difficult to address because most methods used to alter TrkB signaling in vivo affect cortical development or cannot distinguish between pre- and postsynaptic mechanisms. We circumvented these problems by employing transgenic mice expressing a dominant negative TrkB-EGFP fusion protein in sparse pyramidal neurons of the adult neocortex and hippocampus, producing a Golgi-staining-like pattern. In adult V1, expression of dominant negative TrkB-EGFP resulted in reduced mushroom spine maintenance and synaptic efficacy, accompanied by an increase in long and thin spines and filopodia. In contrast, mushroom spine maintenance was unaffected in CA1, indicating that TrkB plays fundamentally different roles in structural plasticity in these brain areas.
Asunto(s)
Hipocampo/metabolismo , Receptor trkB/metabolismo , Corteza Visual/metabolismo , Animales , Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Fenómenos Fisiológicos Celulares , ADN/metabolismo , Células Dendríticas/citología , Espinas Dendríticas , Electrofisiología , Genes Dominantes , Aparato de Golgi/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Confocal , Microscopía Fluorescente , Plasticidad Neuronal , Neuronas/metabolismo , Recombinación Genética , Transducción de Señal , Sinapsis/metabolismo , Transmisión Sináptica , Factores de TiempoRESUMEN
RATIONALE: Nicotine affects many aspects of human cognition, including attention and memory. Activation of nicotinic acetylcholine receptors (nAChRs) in neuronal networks modulates activity and information processing during cognitive tasks, which can be observed in electroencephalograms (EEGs) and functional magnetic resonance imaging studies. OBJECTIVES: In this review, we will address aspects of nAChR functioning as well as synaptic and cellular modulation important for nicotinic impact on neuronal networks that ultimately underlie its effects on cognition. Although we will focus on general mechanisms, an emphasis will be put on attention behavior and nicotinic modulation of prefrontal cortex. In addition, we will discuss how nicotinic effects at the neuronal level could be related to its effects on the cognitive level through the study of electrical oscillations as observed in EEGs and brain slices. RESULTS/CONCLUSIONS: Very little is known about mechanisms of how nAChR activation leads to a modification of electrical oscillation frequencies in EEGs. The results of studies using pharmacological interventions and transgenic animals implicate some nAChR types in aspects of cognition, but neuronal mechanisms are only poorly understood. We are only beginning to understand how nAChR distribution in neuronal networks impacts network functioning. Unveiling receptor and neuronal mechanisms important for nicotinic modulation of cognition will be instrumental for treatments of human disorders in which cholinergic signaling have been implicated, such as schizophrenia, attention deficit/hyperactivity disorder, and addiction.
Asunto(s)
Encéfalo/efectos de los fármacos , Cognición/efectos de los fármacos , Red Nerviosa/efectos de los fármacos , Nicotina/farmacología , Receptores Nicotínicos/efectos de los fármacos , Animales , Animales Modificados Genéticamente , Atención/efectos de los fármacos , Electroencefalografía/efectos de los fármacos , Humanos , Imagen por Resonancia Magnética , Memoria/efectos de los fármacos , Neuronas/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacosRESUMEN
Small conductance, Ca(2+)-activated K(+) channels (SK channels) regulate neuronal excitability. We used patch clamp to study the actions of the neuroprotective drug riluzole on recombinant SK2 channels expressed in HEK293 cells and native SK channels underlying the afterhyperpolarization current (I(AHP)) in cultured hippocampal neurons. External riluzole activated whole-cell SK2 channel currents in HEK293 cells dialyzed with a Ca(2+)-free intracellular solution. When applied to the intracellular aspect of the membrane of giant inside-out patches, riluzole enhanced the membrane current activated by 100 nM Ca(2+) in a reversible and concentration-dependent manner; 30 microM riluzole applied to the intracellular aspect of the patches sensitized the channels to activation by Ca(2+), resulting in a leftward shift of the Ca(2+) activation curve. Riluzole also enhanced the I(AHP) and reduced the spontaneous action potential frequency in chemically stimulated neurons. Modulation of SK channel activity by riluzole may contribute to its cellular, behavioral, and clinical effects.
Asunto(s)
Neuronas/metabolismo , Fármacos Neuroprotectores/farmacología , Canales de Potasio Calcio-Activados , Canales de Potasio/efectos de los fármacos , Riluzol/farmacología , Animales , Línea Celular , Electrofisiología , Espacio Extracelular/efectos de los fármacos , Espacio Extracelular/fisiología , Hipocampo/citología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Humanos , Activación del Canal Iónico/efectos de los fármacos , Activación del Canal Iónico/fisiología , Potenciales de la Membrana/efectos de los fármacos , Conducción Nerviosa/efectos de los fármacos , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp , Canales de Potasio/genética , Ratas , Proteínas Recombinantes , Canales de Potasio de Pequeña Conductancia Activados por el CalcioRESUMEN
The giant excised patch variant of patch clamp recording combines microsecond time resolution of macroscopic currents with rapid exchange of the experimental solutions at the intracellular membrane surface. This technique has been applied to a limited number of cell types, including Xenopus oocytes, muscle cells, and photoreceptors. We have applied this technique to recording recombinant ion channel currents expressed in membrane patches excised from HEK293 cell lines. Giant inside-out patch recordings of Na(+) channels and SK(Ca) type calcium-activated potassium channels show high temporal resolution and excellent signal to noise characteristics. This technique will facilitate the study of recombinant ion channels expressed in mammalian cells.