Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
HGG Adv ; 5(2): 100271, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38297831

RESUMEN

It is only partially understood how constitutive allelic methylation at imprinting control regions (ICRs) interacts with other regulation levels to drive timely parental allele-specific expression along large imprinted domains. The Peg13-Kcnk9 domain is an imprinted domain with important brain functions. To gain insights into its regulation during neural commitment, we performed an integrative analysis of its allele-specific epigenetic, transcriptomic, and cis-spatial organization using a mouse stem cell-based corticogenesis model that recapitulates the control of imprinted gene expression during neurodevelopment. We found that, despite an allelic higher-order chromatin structure associated with the paternally CTCF-bound Peg13 ICR, enhancer-Kcnk9 promoter contacts occurred on both alleles, although they were productive only on the maternal allele. This observation challenges the canonical model in which CTCF binding isolates the enhancer and its target gene on either side and suggests a more nuanced role for allelic CTCF binding at some ICRs.


Asunto(s)
Metilación de ADN , Impresión Genómica , Alelos , Metilación de ADN/genética , Impresión Genómica/genética , Regiones Promotoras Genéticas/genética , Animales , Ratones
2.
Int J Mol Sci ; 23(9)2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35563134

RESUMEN

Glioblastomas represent approximatively half of all gliomas and are the most deadly and aggressive form. Their therapeutic resistance and tumor relapse rely on a subpopulation of cells that are called Glioma Stem Cells (GSCs). Here, we investigated the role of the long non-coding RNA HOXA-AS2 in GSC biology using descriptive and functional analyses of glioma samples classified according to their isocitrate dehydrogenase (IDH) gene mutation status, and of GSC lines. We found that HOXA-AS2 is overexpressed only in aggressive (IDHwt) glioma and GSC lines. ShRNA-based depletion of HOXA-AS2 in GSCs decreased cell proliferation and altered the expression of several hundreds of genes. Integrative analysis revealed that these expression changes were not associated with changes in DNA methylation or chromatin signatures at the promoter of the majority of genes deregulated following HOXA-AS2 silencing in GSCs, suggesting a post-transcriptional regulation. In addition, transcription factor binding motif enrichment and correlation analyses indicated that HOXA-AS2 affects, directly or indirectly, the expression of key transcription factors implicated in GCS biology, including E2F8, E2F1, STAT1, and ATF3, thus contributing to GCS aggressiveness by promoting their proliferation and modulating the inflammation pathway.


Asunto(s)
Glioma , ARN Largo no Codificante , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Glioma/genética , Glioma/patología , Humanos , Inflamación/genética , Células Madre Neoplásicas/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
3.
Hum Mol Genet ; 31(15): 2606-2622, 2022 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-35298627

RESUMEN

Besides the consequences of retrotransposition, long interspersed element 1 (L1) retrotransposons can affect the host genome through their antisense promoter. In addition to the sense promoter, the evolutionarily recent L1 retrotransposons, which are present in several thousand copies, also possess an anti-sense promoter that can produce L1 chimeric transcripts (LCT) composed of the L1 5' UTR followed by the adjacent genomic sequence. The full extent to which LCT expression occurs in a given tissue and whether disruption of the defense mechanisms that normally control L1 retrotransposons affects their expression and function in cancer cells, remain to be established. By using CLIFinder, a dedicated bioinformatics tool, we found that LCT expression was widespread in normal brain and aggressive glioma samples, and that approximately 17% of recent L1 retrotransposons, from the L1PA1 to L1PA7 subfamilies, were involved in their production. Importantly, the transcriptional activities of the L1 antisense promoters and of their host loci were coupled. Accordingly, we detected LCT-producing L1 retrotransposons mainly in transcriptionally active genes and genomic loci. Moreover, changes in the host genomic locus expression level in glioma were associated with a similar change in LCT expression level, regardless of the L1 promoter methylation status. Our findings support a model in which the host genomic locus transcriptional activity is the main driving force of LCT expression. We hypothesize that this model is more applicable when host gene and LCT are transcribed from the same strand.


Asunto(s)
Glioma , Retroelementos , Encéfalo , Glioma/genética , Humanos , Elementos de Nucleótido Esparcido Largo/genética , Regiones Promotoras Genéticas/genética , Retroelementos/genética
4.
Mol Oncol ; 15(8): 1995-2010, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33720519

RESUMEN

In human, the 39 coding HOX genes and 18 referenced noncoding antisense transcripts are arranged in four genomic clusters named HOXA, B, C, and D. This highly conserved family belongs to the homeobox class of genes that encode transcription factors required for normal development. Therefore, HOX gene deregulation might contribute to the development of many cancer types. Here, we study HOX gene deregulation in adult glioma, a common type of primary brain tumor. We performed extensive molecular analysis of tumor samples, classified according to their isocitrate dehydrogenase (IDH1) gene mutation status, and of glioma stem cells. We found widespread expression of sense and antisense HOX transcripts only in aggressive (IDHwt) glioma samples, although the four HOX clusters displayed DNA hypermethylation. Integrative analysis of expression, DNA methylation, and histone modification signatures along the clusters revealed that HOX gene upregulation relies on canonical and alternative bivalent CpG island promoters that escape hypermethylation. H3K27me3 loss at these promoters emerges as the main cause of widespread HOX gene upregulation in IDHwt glioma cell lines and tumors. Our study provides the first comprehensive description of the epigenetic changes at HOX clusters and their contribution to the transcriptional changes observed in adult glioma. It also identified putative 'master' HOX proteins that might contribute to the tumorigenic potential of glioma stem cells.


Asunto(s)
Neoplasias Encefálicas/genética , Metilación de ADN , Genes Homeobox , Glioma/genética , Histonas/genética , Regiones Promotoras Genéticas , Neoplasias Encefálicas/enzimología , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Glioma/enzimología , Glioma/patología , Humanos , Isocitrato Deshidrogenasa/genética , Transcripción Genética
5.
Cell Mol Life Sci ; 78(2): 757-768, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32405722

RESUMEN

The acquisition of cell identity is associated with developmentally regulated changes in the cellular histone methylation signatures. For instance, commitment to neural differentiation relies on the tightly controlled gain or loss of H3K27me3, a hallmark of polycomb-mediated transcriptional gene silencing, at specific gene sets. The KDM6B demethylase, which removes H3K27me3 marks at defined promoters and enhancers, is a key factor in neurogenesis. Therefore, to better understand the epigenetic regulation of neural fate acquisition, it is important to determine how Kdm6b expression is regulated. Here, we investigated the molecular mechanisms involved in the induction of Kdm6b expression upon neural commitment of mouse embryonic stem cells. We found that the increase in Kdm6b expression is linked to a rearrangement between two 3D configurations defined by the promoter contact with two different regions in the Kdm6b locus. This is associated with changes in 5-hydroxymethylcytosine (5hmC) levels at these two regions, and requires a functional ten-eleven-translocation (TET) 3 protein. Altogether, our data support a model whereby Kdm6b induction upon neural commitment relies on an intronic enhancer the activity of which is defined by its TET3-mediated 5-hmC level. This original observation reveals an unexpected interplay between the 5-hmC and H3K27me3 pathways during neural lineage commitment in mammals. It also questions to which extent KDM6B-mediated changes in H3K27me3 level account for the TET-mediated effects on gene expression.


Asunto(s)
Dioxigenasas/metabolismo , Células Madre Embrionarias/citología , Regulación del Desarrollo de la Expresión Génica , Histona Demetilasas con Dominio de Jumonji/genética , Neurogénesis , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Animales , Células Cultivadas , Dioxigenasas/genética , Células Madre Embrionarias/metabolismo , Epigénesis Genética , Técnicas de Silenciamiento del Gen , Ratones Endogámicos C57BL , Regiones Promotoras Genéticas , Regulación hacia Arriba
6.
Genome Res ; 29(10): 1605-1621, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31533980

RESUMEN

In cancer cells, aberrant DNA methylation is commonly associated with transcriptional alterations, including silencing of tumor suppressor genes. However, multiple epigenetic mechanisms, including polycomb repressive marks, contribute to gene deregulation in cancer. To dissect the relative contribution of DNA methylation-dependent and -independent mechanisms to transcriptional alterations at CpG island/promoter-associated genes in cancer, we studied 70 samples of adult glioma, a widespread type of brain tumor, classified according to their isocitrate dehydrogenase (IDH1) mutation status. We found that most transcriptional alterations in tumor samples were DNA methylation-independent. Instead, altered histone H3 trimethylation at lysine 27 (H3K27me3) was the predominant molecular defect at deregulated genes. Our results also suggest that the presence of a bivalent chromatin signature at CpG island promoters in stem cells predisposes not only to hypermethylation, as widely documented, but more generally to all types of transcriptional alterations in transformed cells. In addition, the gene expression strength in healthy brain cells influences the choice between DNA methylation- and H3K27me3-associated silencing in glioma. Highly expressed genes were more likely to be repressed by H3K27me3 than by DNA methylation. Our findings support a model in which altered H3K27me3 dynamics, more specifically defects in the interplay between polycomb protein complexes and the brain-specific transcriptional machinery, is the main cause of transcriptional alteration in glioma cells. Our study provides the first comprehensive description of epigenetic changes in glioma and their relative contribution to transcriptional changes. It may be useful for the design of drugs targeting cancer-related epigenetic defects.


Asunto(s)
Metilación de ADN/genética , Epigénesis Genética/genética , Glioma/genética , Transcripción Genética , Adulto , Línea Celular Tumoral , Cromatina/genética , Islas de CpG/genética , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Glioma/patología , Histonas/genética , Humanos , Isocitrato Deshidrogenasa/genética , Histona Demetilasas con Dominio de Jumonji/genética , Masculino , Regiones Promotoras Genéticas
7.
Genome Res ; 28(11): 1733-1746, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30287550

RESUMEN

The mammalian cell nucleus contains numerous discrete suborganelles named nuclear bodies. While recruitment of specific genomic regions into these large ribonucleoprotein (RNP) complexes critically contributes to higher-order functional chromatin organization, such regions remain ill-defined. We have developed the high-salt-recovered sequences-sequencing (HRS-seq) method, a straightforward genome-wide approach whereby we isolated and sequenced genomic regions associated with large high-salt insoluble RNP complexes. By using mouse embryonic stem cells (ESCs), we showed that these regions essentially correspond to the most highly expressed genes, and to cis-regulatory sequences like super-enhancers, that belong to the active A chromosomal compartment. They include both cell-type-specific genes, such as pluripotency genes in ESCs, and housekeeping genes associated with nuclear bodies, such as histone and snRNA genes that are central components of Histone Locus Bodies and Cajal bodies. We conclude that HRSs are associated with the active chromosomal compartment and with large RNP complexes including nuclear bodies. Association of such chromosomal regions with nuclear bodies is in agreement with the recently proposed phase separation model for transcription control and might thus play a central role in organizing the active chromosomal compartment in mammals.


Asunto(s)
Cromosomas/química , Ribonucleoproteínas/química , Animales , Células Cultivadas , Fraccionamiento Químico/métodos , Cromosomas/metabolismo , Células Madre Embrionarias/metabolismo , Ratones , Unión Proteica , Secuencias Reguladoras de Ácidos Nucleicos , Ribonucleoproteínas/metabolismo , Salinidad
8.
Mol Oncol ; 12(6): 814-829, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29575763

RESUMEN

Despite the high efficiency of tyrosine kinase inhibitors (TKI), some patients with chronic myeloid leukemia (CML) will display residual disease that can become resistant to treatment, indicating intraclonal heterogeneity in chronic-phase CML (CP-CML). To determine the basis of this heterogeneity, we conducted the first exhaustive characterization of the DNA methylation pattern of sorted CP-CML CD34+ CD15- (immature) and CD34- CD15+ (mature) cells at diagnosis (prior to any treatment) and compared it to that of CD34+ CD15- and CD34- CD15+ cells isolated from healthy donors (HD). In both cell types, we identified several hundreds of differentially methylated regions (DMRs) showing DNA methylation changes between CP-CML and HD samples, with only a subset of them in common between CD34+ CD15- and CD34- CD15+ cells. This suggested DNA methylation variability within the same CML clone. We also identified 70 genes that could be aberrantly repressed upon hypermethylation and 171 genes that could be aberrantly expressed upon hypomethylation of some of these DMRs in CP-CML cells, among which 18 and 81, respectively, were in CP-CML CD34+ CD15- cells only. We then validated the DNA methylation and expression defects of selected candidate genes. Specifically, we identified GAS2, a candidate oncogene, as a new example of gene the hypomethylation of which is associated with robust overexpression in CP-CML cells. Altogether, we demonstrated that DNA methylation abnormalities exist at early stages of CML and can affect the transcriptional landscape of malignant cells. These observations could lead to the development of combination treatments with epigenetic drugs and TKI for CP-CML.


Asunto(s)
Antígenos CD34/metabolismo , Metilación de ADN/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Antígeno Lewis X/metabolismo , Transcripción Genética , Adulto , Anciano , Anciano de 80 o más Años , Islas de CpG/genética , Femenino , Regulación Leucémica de la Expresión Génica , Estudios de Asociación Genética , Células Madre Embrionarias Humanas/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Regiones Promotoras Genéticas/genética , Adulto Joven
9.
Epigenetics ; 13(2): 117-121, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-27911167

RESUMEN

The analysis of DNA methylation has become routine in the pipeline for diagnosis of imprinting disorders, with many publications reporting aberrant methylation associated with imprinted differentially methylated regions (DMRs). However, comparisons between these studies are routinely hampered by the lack of consistency in reporting sites of methylation evaluated. To avoid confusion surrounding nomenclature, special care is needed to communicate results accurately, especially between scientists and other health care professionals. Within the European Network for Human Congenital Imprinting Disorders we have discussed these issues and designed a nomenclature for naming imprinted DMRs as well as for reporting methylation values. We apply these recommendations for imprinted DMRs that are commonly assayed in clinical laboratories and show how they support standardized database submission. The recommendations are in line with existing recommendations, most importantly the Human Genome Variation Society nomenclature, and should facilitate accurate reporting and data exchange among laboratories and thereby help to avoid future confusion.


Asunto(s)
Metilación de ADN , Epigenómica/normas , Impresión Genómica , Terminología como Asunto , Animales , Humanos , Polimorfismo Genético , Guías de Práctica Clínica como Asunto
10.
Bioinformatics ; 34(4): 688-690, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29069308

RESUMEN

Summary: L1 Chimeric Transcripts (LCTs) are initiated by repeated LINE-1 element antisense promoters and include the L1 5'UTR sequence in antisense orientation followed by the adjacent genomic region. LCTs have been characterized mainly using bioinformatics approaches to query dbEST. To take advantage of NGS data to unravel the transcriptome composition, we developed Chimeric LIne Finder (CLIFinder), a new bioinformatics tool. Using stranded paired-end RNA-seq data, we demonstrated that CLIFinder can identify genome-wide transcribed chimera sequences corresponding to potential LCTs. Moreover, CLIFinder can be adapted to study transcription from other repeat types. Availability and implementation: The code is available at: https://github.com/GReD-Clermont/CLIFinder; and for Galaxy users, it is directly accessible in the tool shed at: https://toolshed.g2.bx.psu.edu/view/clifinder/clifinder/. Contact: catherine.barriere@uca.fr. Supplementary information: Supplementary data are available at Bioinformatics online.


Asunto(s)
Elementos de Nucleótido Esparcido Largo , Análisis de Secuencia de ARN/métodos , Programas Informáticos , Perfilación de la Expresión Génica , Genoma Humano , Genómica , Humanos
11.
Hum Mutat ; 38(6): 615-620, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28256047

RESUMEN

Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is a rare cause of pulmonary hypertension in newborns. Maternally inherited point mutations in Forkhead Box F1 gene (FOXF1), deletions of the gene, or its long-range enhancers on the maternal allele are responsible for this neonatal lethal disorder. Here, we describe monozygotic twins and one full-term newborn with ACD and gastrointestinal malformations caused by de novo mutations of FOXF1 on the maternal-inherited alleles. Since this parental transmission is consistent with genomic imprinting, the parent-of-origin specific monoallelic expression of genes, we have undertaken a detailed analysis of both allelic expression and DNA methylation. FOXF1 and its neighboring gene FENDRR were both biallelically expressed in a wide range of fetal tissues, including lung and intestine. Furthermore, detailed methylation screening within the 16q24.1 regions failed to identify regions of allelic methylation, suggesting that disrupted imprinting is not responsible for ACDMPV.


Asunto(s)
Factores de Transcripción Forkhead/genética , Impresión Genómica , Síndrome de Circulación Fetal Persistente/genética , Alveolos Pulmonares/anomalías , Hibridación Genómica Comparativa , Metilación de ADN/genética , Femenino , Humanos , Hipertensión Pulmonar , Recién Nacido , Herencia Materna/genética , Mutación , Síndrome de Circulación Fetal Persistente/complicaciones , Síndrome de Circulación Fetal Persistente/patología , Embarazo , Alveolos Pulmonares/patología , Gemelos Monocigóticos
12.
Methods Mol Biol ; 1589: 75-88, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-26025624

RESUMEN

The chromosome conformation capture (3C) technique is fundamental to many population-based methods investigating chromatin dynamics and organization in eukaryotes. Here, we provide a modified quantitative 3C (3C-qPCR) protocol for improved quantitative analyses of intra-chromosomal contacts. We also describe an algorithm for data normalization which allows more accurate comparisons between contact profiles.


Asunto(s)
Cromatina/química , Mapeo Cromosómico/métodos , Cromosomas Humanos/química , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Cartilla de ADN/química , Humanos
13.
Oncotarget ; 8(3): 4110-4124, 2017 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-27926531

RESUMEN

CpG islands (CGI) marked by bivalent chromatin in stem cells are believed to be more prone to aberrant DNA methylation in tumor cells. The robustness and genome-wide extent of this instructive program in different cancer types remain to be determined. To address this issue we developed a user-friendly approach to integrate the stem cell chromatin signature in customized DNA methylation analyses. We used publicly available ChIP-sequencing datasets of several human embryonic stem cell (hESC) lines to determine the extent of bivalent chromatin genome-wide. We then created annotated lists of high-confidence bivalent, H3K4me3-only and H3K27me3-only chromatin regions. The main features of bivalent regions included localization in CGI/promoters, depletion in retroelements and enrichment in specific histone modifications, including the poorly characterized H3K23me2 mark. Moreover, bivalent promoters could be classified in three clusters based on PRC2 and PolII complexes occupancy. Genes with bivalent promoters of the PRC2-defined cluster displayed the lowest expression upon differentiation. As proof-of-concept, we assessed the DNA methylation pattern of eight types of tumors and confirmed that aberrant cancer-associated DNA hypermethylation preferentially targets CGI characterized by bivalent chromatin in hESCs. We also found that such aberrant DNA hypermethylation affected particularly bivalent CGI/promoters associated with genes that tend to remain repressed upon differentiation. Strikingly, bivalent CGI were the most affected by aberrant DNA hypermethylation in both CpG Island Methylator Phenotype-positive (CIMP+) and CIMP-negative tumors, suggesting that, besides transcriptional silencing in the pre-tumorigenic cells, the bivalent chromatin signature in hESCs is a key determinant of the instructive program for aberrant DNA methylation.


Asunto(s)
Metilación de ADN , Histonas/genética , Neoplasias/genética , Regiones Promotoras Genéticas , Diferenciación Celular , Línea Celular Tumoral , Islas de CpG , Bases de Datos Genéticas , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Epigénesis Genética , Código de Histonas , Proteínas de Homeodominio/genética , Humanos , Especificidad de Órganos
14.
Cancer Lett ; 386: 196-207, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-27894957

RESUMEN

Epigenetic modifications have been shown to be important in developmental tumors as Ewing sarcoma. We profiled the DNA methylation status of 15 primary tumors, 7 cell lines, 10 healthy tissues and 4 human mesenchymal stem cells lines samples using the Infinium Human Methylation 450K. Differential methylation analysis between Ewing sarcoma and reference samples revealed 1166 hypermethylated and 864 hypomethylated CpG sites (Bonferroni p < 0.05, δ-ß-value with absolute difference of >0.20) corresponding to 392 and 470 genes respectively. Gene Ontology analysis of genes differentially methylated in Ewing sarcoma samples showed a significant enrichment of developmental genes. Membrane and cell signal genes were also enriched, among those, 11 were related to caveola formation. We identified differential hypermethylation of CpGs located in the body and S-Shore of the PTRF gene in Ewing sarcoma that correlated with its repressed transcriptional state. Reintroduction of PTRF/Cavin-1 in Ewing sarcoma cells revealed a role of this protein as a tumor suppressor. Restoration of caveolae in the membrane of Ewing sarcoma cells, by exogenously reintroducing PTRF, disrupts the MDM2/p53 complex, which consequently results in the activation of p53 and the induction of apoptosis.


Asunto(s)
Neoplasias Óseas/genética , Caveolina 1/genética , Metilación de ADN , Epigénesis Genética , Perfilación de la Expresión Génica/métodos , Genes Supresores de Tumor , Proteínas de Unión al ARN/genética , Sarcoma de Ewing/genética , Animales , Apoptosis , Neoplasias Óseas/metabolismo , Neoplasias Óseas/patología , Caveolina 1/metabolismo , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Humanos , Estimación de Kaplan-Meier , Ratones Desnudos , Fosforilación , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteínas de Unión al ARN/metabolismo , Sarcoma de Ewing/metabolismo , Sarcoma de Ewing/patología , Transducción de Señal , España , Transfección , Carga Tumoral , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
15.
PLoS Genet ; 12(11): e1006427, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27835649

RESUMEN

Thousands of regions in gametes have opposing methylation profiles that are largely resolved during the post-fertilization epigenetic reprogramming. However some specific sequences associated with imprinted loci survive this demethylation process. Here we present the data describing the fate of germline-derived methylation in humans. With the exception of a few known paternally methylated germline differentially methylated regions (DMRs) associated with known imprinted domains, we demonstrate that sperm-derived methylation is reprogrammed by the blastocyst stage of development. In contrast a large number of oocyte-derived methylation differences survive to the blastocyst stage and uniquely persist as transiently methylated DMRs only in the placenta. Furthermore, we demonstrate that this phenomenon is exclusive to primates, since no placenta-specific maternal methylation was observed in mouse. Utilizing single cell RNA-seq datasets from human preimplantation embryos we show that following embryonic genome activation the maternally methylated transient DMRs can orchestrate imprinted expression. However despite showing widespread imprinted expression of genes in placenta, allele-specific transcriptional profiling revealed that not all placenta-specific DMRs coordinate imprinted expression and that this maternal methylation may be absent in a minority of samples, suggestive of polymorphic imprinted methylation.


Asunto(s)
Metilación de ADN/genética , Impresión Genómica/genética , Células Germinativas/metabolismo , Oocitos/metabolismo , Animales , Blastocisto/metabolismo , Islas de CpG/genética , Femenino , Humanos , Masculino , Ratones , Placenta/metabolismo , Embarazo , Primates/genética , Primates/crecimiento & desarrollo , Espermatozoides/metabolismo
16.
Carcinogenesis ; 37(2): 169-176, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26717998

RESUMEN

Malignant gliomas are the most common primary brain tumors. Grade III and IV gliomas harboring wild-type IDH1/2 are the most aggressive. In addition to surgery and radiotherapy, concomitant and adjuvant chemotherapy with temozolomide (TMZ) significantly improves overall survival (OS). The methylation status of the O(6)-methylguanine-DNA methyltransferase (MGMT) promoter is predictive of TMZ response and a prognostic marker of cancer outcome. However, the promoter regions the methylation of which correlates best with survival in aggressive glioma and whether the promoter methylation status predictive value could be refined or improved by other MGMT-associated molecular markers are not precisely known. In a cohort of 87 malignant gliomas treated with radiotherapy and TMZ-based chemotherapy, we retrospectively determined the MGMT promoter methylation status, genotyped single nucleotide polymorphisms (SNPs) in the promoter region and quantified MGMT mRNA expression level. Each of these variables was correlated with each other and with the patients' OS. We found that methylation of the CpG sites within MGMT exon 1 best correlated with OS and MGMT expression levels, and confirmed MGMT methylation as a stronger independent prognostic factor compared to MGMT transcription levels. Our main finding is that the presence of only the A allele at the rs34180180 SNP in the tumor was significantly associated with shorter OS, independently of the MGMT methylation status. In conclusion, in the clinic, rs34180180 SNP genotyping could improve the prognostic value of the MGMT promoter methylation assay in patients with aggressive glioma treated with TMZ.


Asunto(s)
Neoplasias Encefálicas/genética , Metilasas de Modificación del ADN/genética , Enzimas Reparadoras del ADN/genética , Glioma/genética , Polimorfismo de Nucleótido Simple , Proteínas Supresoras de Tumor/genética , Adulto , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/patología , Metilación de ADN/genética , Femenino , Genotipo , Glioma/mortalidad , Glioma/patología , Humanos , Estimación de Kaplan-Meier , Masculino , Reacción en Cadena de la Polimerasa , Polimorfismo de Longitud del Fragmento de Restricción , Pronóstico , Regiones Promotoras Genéticas/genética , Modelos de Riesgos Proporcionales , Estudios Retrospectivos
17.
Nucleic Acids Res ; 44(2): 621-35, 2016 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-26400168

RESUMEN

Parental allele-specific expression of imprinted genes is mediated by imprinting control regions (ICRs) that are constitutively marked by DNA methylation imprints on the maternal or paternal allele. Mono-allelic DNA methylation is strictly required for the process of imprinting and has to be faithfully maintained during the entire life-span. While the regulation of DNA methylation itself is well understood, the mechanisms whereby the opposite allele remains unmethylated are unclear. Here, we show that in the mouse, at maternally methylated ICRs, the paternal allele, which is constitutively associated with H3K4me2/3, is marked by default by H3K27me3 when these ICRs are transcriptionally inactive, leading to the formation of a bivalent chromatin signature. Our data suggest that at ICRs, chromatin bivalency has a protective role by ensuring that DNA on the paternal allele remains unmethylated and protected against spurious and unscheduled gene expression. Moreover, they provide the proof of concept that, beside pluripotent cells, chromatin bivalency is the default state of transcriptionally inactive CpG island promoters, regardless of the developmental stage, thereby contributing to protect cell identity.


Asunto(s)
Alelos , Cromatina/metabolismo , Impresión Genómica , Animales , Células Cultivadas , Cromatina/genética , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN , Células Madre Embrionarias/fisiología , Femenino , Regulación de la Expresión Génica , Masculino , Ratones Endogámicos C57BL , Ratones Mutantes , Especificidad de Órganos , Regiones Promotoras Genéticas
18.
Epigenetics ; 9(5): 783-90, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24589629

RESUMEN

Cancer is as much an epigenetic disease as a genetic one; however, the interplay between these two processes is unclear. Recently, it has been shown that a large proportion of DNA methylation variability can be explained by allele-specific methylation (ASM), either at classical imprinted loci or those regulated by underlying genetic variants. During a recent screen for imprinted differentially methylated regions, we identified the genomic interval overlapping the non-coding nc886 RNA (previously known as vtRNA2-1) as an atypical ASM that shows variable levels of methylation, predominantly on the maternal allele in many tissues. Here we show that the nc886 interval is the first example of a polymorphic imprinted DMR in humans. Further analysis of the region suggests that the interval subjected to ASM is approximately 2 kb in size and somatically acquired. An in depth analysis of this region in primary cancer samples with matching normal adjacent tissue from the Cancer Genome Atlas revealed that aberrant methylation in bladder, breast, colon and lung tumors occurred in approximately 27% of cases. Hypermethylation occurred more frequently than hypomethylation. Using additional normal-tumor paired samples we show that on rare occasions the aberrant methylation profile is due to loss-of-heterozygosity. This work therefore suggests that the nc886 locus is subject to variable allelic methylation that undergoes cancer-associated epigenetic changes in solid tumors.


Asunto(s)
Metilación de ADN , Sitios Genéticos , Impresión Genómica , Neoplasias/genética , ARN no Traducido/genética , Secuencias Repetidas en Tándem , Adulto , Neoplasias de la Mama/genética , Neoplasias del Colon/genética , Femenino , Humanos , Pérdida de Heterocigocidad , Neoplasias Pulmonares/genética , Persona de Mediana Edad , Regiones Promotoras Genéticas , Neoplasias de la Vejiga Urinaria/genética , Adulto Joven
19.
Epigenetics Chromatin ; 7(1): 5, 2014 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-24667089

RESUMEN

BACKGROUND: Genomic imprinting is the epigenetic marking of genes that results in parent-of-origin monoallelic expression. Most imprinted domains are associated with differentially DNA methylated regions (DMRs) that originate in the gametes, and are maintained in somatic tissues after fertilization. This allelic methylation profile is associated with a plethora of histone tail modifications that orchestrates higher order chromatin interactions. The mouse chromosome 15 imprinted cluster contains multiple brain-specific maternally expressed transcripts including Ago2, Chrac1, Trappc9 and Kcnk9 and a paternally expressed gene, Peg13. The promoter of Peg13 is methylated on the maternal allele and is the sole DMR within the locus. To determine the extent of imprinting within the human orthologous region on chromosome 8q24, a region associated with autosomal recessive intellectual disability, Birk-Barel mental retardation and dysmorphism syndrome, we have undertaken a systematic analysis of allelic expression and DNA methylation of genes mapping within an approximately 2 Mb region around TRAPPC9. RESULTS: Utilizing allele-specific RT-PCR, bisulphite sequencing, chromatin immunoprecipitation and chromosome conformation capture (3C) we show the reciprocal expression of the novel, paternally expressed, PEG13 non-coding RNA and maternally expressed KCNK9 genes in brain, and the biallelic expression of flanking transcripts in a range of tissues. We identify a tandem-repeat region overlapping the PEG13 transcript that is methylated on the maternal allele, which binds CTCF-cohesin in chromatin immunoprecipitation experiments and possesses enhancer-blocker activity. Using 3C, we identify mutually exclusive approximately 58 and 500 kb chromatin loops in adult frontal cortex between a novel brain-specific enhancer, marked by H3K4me1 and H3K27ac, with the KCNK9 and PEG13 promoters which we propose regulates brain-specific expression. CONCLUSIONS: We have characterised the molecular mechanism responsible for reciprocal allelic expression of the PEG13 and KCNK9 transcripts. Therefore, our observations may have important implications for identifying the cause of intellectual disabilities associated with the 8q24 locus.

20.
Mol Cell ; 53(4): 672-81, 2014 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-24486021

RESUMEN

Eukaryotic chromosomes are partitioned into topologically associating domains (TADs) that are demarcated by distinct insulator-binding proteins (IBPs) in Drosophila. Whether IBPs regulate specific long-range contacts and how this may impact gene expression remains unclear. Here we identify "indirect peaks" of multiple IBPs that represent their distant sites of interactions through long-range contacts. Indirect peaks depend on protein-protein interactions among multiple IBPs and their common cofactors, including CP190, as confirmed by high-resolution analyses of long-range contacts. Mutant IBPs unable to interact with CP190 impair long-range contacts as well as the expression of hundreds of distant genes that are specifically flanked by indirect peaks. Regulation of distant genes strongly correlates with RNAPII pausing, highlighting how this key transcriptional stage may trap insulator-based long-range interactions. Our data illustrate how indirect peaks may decipher gene regulatory networks through specific long-range interactions.


Asunto(s)
Inmunoprecipitación de Cromatina/métodos , Regulación de la Expresión Génica , Elementos Aisladores/fisiología , ARN Polimerasa II/metabolismo , Animales , Sitios de Unión , Factor de Unión a CCCTC , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Proteínas del Ojo/metabolismo , Redes Reguladoras de Genes , Mutación , Regiones Promotoras Genéticas , Unión Proteica , Mapeo de Interacción de Proteínas , Interferencia de ARN , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...