Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Br J Cancer ; 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902534

RESUMEN

BACKGROUND/OBJECTIVES: Pseudo-vascular network formation in vitro is considered a key characteristic of vasculogenic mimicry. While many cancer cell lines form pseudo-vascular networks, little is known about the spatiotemporal dynamics of these formations. METHODS: Here, we present a framework for monitoring and characterising the dynamic formation and dissolution of pseudo-vascular networks in vitro. The framework combines time-resolved optical microscopy with open-source image analysis for network feature extraction and statistical modelling. The framework is demonstrated by comparing diverse cancer cell lines associated with vasculogenic mimicry, then in detecting response to drug compounds proposed to affect formation of vasculogenic mimics. Dynamic datasets collected were analysed morphometrically and a descriptive statistical analysis model was developed in order to measure stability and dissimilarity characteristics of the pseudo-vascular networks formed. RESULTS: Melanoma cells formed the most stable pseudo-vascular networks and were selected to evaluate the response of their pseudo-vascular networks to treatment with axitinib, brucine and tivantinib. Tivantinib has been found to inhibit the formation of the pseudo-vascular networks more effectively, even in dose an order of magnitude less than the two other agents. CONCLUSIONS: Our framework is shown to enable quantitative analysis of both the capacity for network formation, linked vasculogenic mimicry, as well as dynamic responses to treatment.

2.
Stat Med ; 43(5): 833-854, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38115199

RESUMEN

Average (bio)equivalence tests are used to assess if a parameter, like the mean difference in treatment response between two conditions for example, lies within a given equivalence interval, hence allowing to conclude that the conditions have "equivalent" means. The two one-sided tests (TOST) procedure, consisting in testing whether the target parameter is respectively significantly greater and lower than some pre-defined lower and upper equivalence limits, is typically used in this context, usually by checking whether the confidence interval for the target parameter lies within these limits. This intuitive and visual procedure is however known to be conservative, especially in the case of highly variable drugs, where it shows a rapid power loss, often reaching zero, hence making it impossible to conclude for equivalence when it is actually true. Here, we propose a finite sample correction of the TOST procedure, the α $$ \alpha $$ -TOST, which consists in a correction of the significance level of the TOST allowing to guarantee a test size (or type-I error rate) of α $$ \alpha $$ . This new procedure essentially corresponds to a finite sample and variability correction of the TOST procedure. We show that this procedure is uniformly more powerful than the TOST, easy to compute, and that its operating characteristics outperform the ones of its competitors. A case study about econazole nitrate deposition in porcine skin is used to illustrate the benefits of the proposed method and its advantages compared to other available procedures.


Asunto(s)
Equivalencia Terapéutica , Tamaño de la Muestra
4.
Trials ; 24(1): 640, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37798805

RESUMEN

In the UK, the Medicines and Healthcare products Regulatory Agency consulted on proposals "to improve and strengthen the UK clinical trials legislation to help us make the UK the best place to research and develop safe and innovative medicines". The purpose of the consultation was to help finalise the proposals and contribute to the drafting of secondary legislation. We discussed these proposals as members of the Trials Methodology Research Partnership Adaptive Designs Working Group, which is jointly funded by the Medical Research Council and the National Institute for Health and Care Research. Two topics arose frequently in the discussion: the emphasis on legislation, and the absence of questions on data sharing. It is our opinion that the proposals rely heavily on legislation to change practice. However, clinical trials are heterogeneous, and as a result some trials will struggle to comply with all of the proposed legislation. Furthermore, adaptive design clinical trials are even more heterogeneous than their non-adaptive counterparts, and face more challenges. Consequently, it is possible that increased legislation could have a greater negative impact on adaptive designs than non-adaptive designs. Overall, we are sceptical that the introduction of legislation will achieve the desired outcomes, with some exceptions. Meanwhile the topic of data sharing - making anonymised individual-level clinical trial data available to other investigators for further use - is entirely absent from the proposals and the consultation in general. However, as an aspect of the wider concept of open science and reproducible research, data sharing is an increasingly important aspect of clinical trials. The benefits of data sharing include faster innovation, improved surveillance of drug safety and effectiveness and decreasing participant exposure to unnecessary risk. There are already a number of UK-focused documents that discuss and encourage data sharing, for example, the Concordat on Open Research Data and the Medical Research Council's Data Sharing Policy. We strongly suggest that data sharing should be the norm rather than the exception, and hope that the forthcoming proposals on clinical trials invite discussion on this important topic.


Asunto(s)
Difusión de la Información , Proyectos de Investigación , Humanos , Atención a la Salud
5.
Nat Commun ; 14(1): 6505, 2023 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-37845213

RESUMEN

High-grade serous ovarian carcinoma (HGSOC) is characterised by poor outcome and extreme chromosome instability (CIN). Therapies targeting centrosome amplification (CA), a key mediator of chromosome missegregation, may have significant clinical utility in HGSOC. However, the prevalence of CA in HGSOC, its relationship to genomic biomarkers of CIN and its potential impact on therapeutic response have not been defined. Using high-throughput multi-regional microscopy on 287 clinical HGSOC tissues and 73 cell lines models, here we show that CA through centriole overduplication is a highly recurrent and heterogeneous feature of HGSOC and strongly associated with CIN and genome subclonality. Cell-based studies showed that high-prevalence CA is phenocopied in ovarian cancer cell lines, and that high CA is associated with increased multi-treatment resistance; most notably to paclitaxel, the commonest treatment used in HGSOC. CA in HGSOC may therefore present a potential driver of tumour evolution and a powerful biomarker for response to standard-of-care treatment.


Asunto(s)
Cistadenocarcinoma Seroso , Neoplasias Ováricas , Humanos , Femenino , Neoplasias Ováricas/patología , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Centrosoma/metabolismo , Cistadenocarcinoma Seroso/genética
6.
Elife ; 122023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37166279

RESUMEN

High-grade serous ovarian carcinoma (HGSOC) is the most genomically complex cancer, characterized by ubiquitous TP53 mutation, profound chromosomal instability, and heterogeneity. The mutational processes driving chromosomal instability in HGSOC can be distinguished by specific copy number signatures. To develop clinically relevant models of these mutational processes we derived 15 continuous HGSOC patient-derived organoids (PDOs) and characterized them using bulk transcriptomic, bulk genomic, single-cell genomic, and drug sensitivity assays. We show that HGSOC PDOs comprise communities of different clonal populations and represent models of different causes of chromosomal instability including homologous recombination deficiency, chromothripsis, tandem-duplicator phenotype, and whole genome duplication. We also show that these PDOs can be used as exploratory tools to study transcriptional effects of copy number alterations as well as compound-sensitivity tests. In summary, HGSOC PDO cultures provide validated genomic models for studies of specific mutational processes and precision therapeutics.


Asunto(s)
Neoplasias Ováricas , Humanos , Femenino , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Mutación , Genómica , Inestabilidad Cromosómica , Organoides
7.
EMBO Mol Med ; 15(6): e16505, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-37161793

RESUMEN

Analysis of circulating tumor DNA (ctDNA) to monitor cancer dynamics and detect minimal residual disease has been an area of increasing interest. Multiple methods have been proposed but few studies have compared the performance of different approaches. Here, we compare detection of ctDNA in serial plasma samples from patients with breast cancer using different tumor-informed and tumor-naïve assays designed to detect structural variants (SVs), single nucleotide variants (SNVs), and/or somatic copy-number aberrations, by multiplex PCR, hybrid capture, and different depths of whole-genome sequencing. Our results demonstrate that the ctDNA dynamics and allele fractions (AFs) were highly concordant when analyzing the same patient samples using different assays. Tumor-informed assays showed the highest sensitivity for detection of ctDNA at low concentrations. Hybrid capture sequencing targeting between 1,347 and 7,491 tumor-identified mutations at high depth was the most sensitive assay, detecting ctDNA down to an AF of 0.00024% (2.4 parts per million, ppm). Multiplex PCR targeting 21-47 tumor-identified SVs per patient detected ctDNA down to 0.00047% AF (4.7 ppm) and has potential as a clinical assay.


Asunto(s)
Neoplasias de la Mama , ADN Tumoral Circulante , Humanos , Femenino , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/genética , Biomarcadores de Tumor/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , ADN Tumoral Circulante/genética , Mutación
8.
Nat Commun ; 13(1): 6360, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36289203

RESUMEN

Chromosomal instability is a major challenge to patient stratification and targeted drug development for high-grade serous ovarian carcinoma (HGSOC). Here we show that somatic copy number alterations (SCNAs) in frequently amplified HGSOC cancer genes significantly correlate with gene expression and methylation status. We identify five prevalent clonal driver SCNAs (chromosomal amplifications encompassing MYC, PIK3CA, CCNE1, KRAS and TERT) from multi-regional HGSOC data and reason that their strong selection should prioritise them as key biomarkers for targeted therapies. We use primary HGSOC spheroid models to test interactions between in vitro targeted therapy and SCNAs. MYC chromosomal copy number is associated with in-vitro and clinical response to paclitaxel and in-vitro response to mTORC1/2 inhibition. Activation of the mTOR survival pathway in the context of MYC-amplified HGSOC is statistically associated with increased prevalence of SCNAs in genes from the PI3K pathway. Co-occurrence of amplifications in MYC and genes from the PI3K pathway is independently observed in squamous lung cancer and triple negative breast cancer. In this work, we show that identifying co-occurrence of clonal driver SCNA genes could be used to tailor therapeutics for precision medicine.


Asunto(s)
Cistadenocarcinoma Seroso , Neoplasias Ováricas , Humanos , Femenino , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Variaciones en el Número de Copia de ADN , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Cistadenocarcinoma Seroso/tratamiento farmacológico , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/metabolismo , Fosfatidilinositol 3-Quinasa Clase I/genética , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Paclitaxel/uso terapéutico , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo
9.
Respirology ; 27(10): 834-843, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35918280

RESUMEN

The use of Bayesian adaptive designs for clinical trials has increased in recent years, particularly during the COVID-19 pandemic. Bayesian adaptive designs offer a flexible and efficient framework for conducting clinical trials and may provide results that are more useful and natural to interpret for clinicians, compared to traditional approaches. In this review, we provide an introduction to Bayesian adaptive designs and discuss its use in recent clinical trials conducted in respiratory medicine. We illustrate this approach by constructing a Bayesian adaptive design for a multi-arm trial that compares two non-invasive ventilation treatments to standard oxygen therapy for patients with acute cardiogenic pulmonary oedema. We highlight the benefits and some of the challenges involved in designing and implementing Bayesian adaptive trials.


Asunto(s)
COVID-19 , Neumología , Teorema de Bayes , Ensayos Clínicos como Asunto , Humanos , Oxígeno , Pandemias , Proyectos de Investigación
11.
EMBO Mol Med ; 14(8): e15729, 2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35694774

RESUMEN

Whole-genome sequencing (WGS) of circulating tumour DNA (ctDNA) is now a clinically important biomarker for predicting therapy response, disease burden and disease progression. However, the translation of ctDNA monitoring into vital preclinical PDX models has not been possible owing to low circulating blood volumes in small rodents. Here, we describe the longitudinal detection and monitoring of ctDNA from minute volumes of blood in PDX mice. We developed a xenograft Tumour Fraction (xTF) metric using shallow WGS of dried blood spots (DBS), and demonstrate its application to quantify disease burden, monitor treatment response and predict disease outcome in a preclinical study of PDX mice. Further, we show how our DBS-based ctDNA assay can be used to detect gene-specific copy number changes and examine the copy number landscape over time. Use of sequential DBS ctDNA assays could transform future trial designs in both mice and patients by enabling increased sampling and molecular monitoring.


Asunto(s)
ADN Tumoral Circulante , Neoplasias , Animales , Biomarcadores de Tumor , ADN Tumoral Circulante/genética , Costo de Enfermedad , Xenoinjertos , Ratones , Neoplasias/genética , Neoplasias/terapia
12.
Nature ; 606(7916): 976-983, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35705807

RESUMEN

Chromosomal instability (CIN) results in the accumulation of large-scale losses, gains and rearrangements of DNA1. The broad genomic complexity caused by CIN is a hallmark of cancer2; however, there is no systematic framework to measure different types of CIN and their effect on clinical phenotypes pan-cancer. Here we evaluate the extent, diversity and origin of CIN across 7,880 tumours representing 33 cancer types. We present a compendium of 17 copy number signatures that characterize specific types of CIN, with putative aetiologies supported by multiple independent data sources. The signatures predict drug response and identify new drug targets. Our framework refines the understanding of impaired homologous recombination, which is one of the most therapeutically targetable types of CIN. Our results illuminate a fundamental structure underlying genomic complexity in human cancers and provide a resource to guide future CIN research.


Asunto(s)
Inestabilidad Cromosómica , Neoplasias , Inestabilidad Cromosómica/genética , Recombinación Homóloga/efectos de los fármacos , Humanos , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo
14.
Photoacoustics ; 26: 100357, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35574188

RESUMEN

Mesoscopic photoacoustic imaging (PAI) enables non-invasive visualisation of tumour vasculature. The visual or semi-quantitative 2D measurements typically applied to mesoscopic PAI data fail to capture the 3D vessel network complexity and lack robust ground truths for assessment of accuracy. Here, we developed a pipeline for quantifying 3D vascular networks captured using mesoscopic PAI and tested the preservation of blood volume and network structure with topological data analysis. Ground truth data of in silico synthetic vasculatures and a string phantom indicated that learning-based segmentation best preserves vessel diameter and blood volume at depth, while rule-based segmentation with vesselness image filtering accurately preserved network structure in superficial vessels. Segmentation of vessels in breast cancer patient-derived xenografts (PDXs) compared favourably to ex vivo immunohistochemistry. Furthermore, our findings underscore the importance of validating segmentation methods when applying mesoscopic PAI as a tool to evaluate vascular networks in vivo.

15.
Cancer Res ; 82(8): 1658-1668, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35404400

RESUMEN

Angiogenesis is an established prognostic factor in advanced breast cancer, yet response to antiangiogenic therapies in this disease remains highly variable. Noninvasive imaging biomarkers could help identify patients that will benefit from antiangiogenic therapy and provide an ideal tool for longitudinal monitoring, enabling dosing regimens to be altered with real-time feedback. Photoacoustic tomography (PAT) is an emerging imaging modality that provides a direct readout of tumor hemoglobin concentration and oxygenation. We hypothesized that PAT could be used in the longitudinal setting to provide an early indication of response or resistance to antiangiogenic therapy. To test this hypothesis, PAT was performed over time in estrogen receptor-positive and estrogen receptor-negative breast cancer xenograft mouse models undergoing treatment with the antiangiogenic bevacizumab as a single agent. The cohort of treated tumors, which were mostly resistant to the treatment, contained a subset that demonstrated a clear survival benefit. At endpoint, the PAT data from the responding subset showed significantly lower oxygenation and higher hemoglobin content compared with both resistant and control tumors. Longitudinal analysis revealed that tumor oxygenation diverged significantly in the responding subset, identifying early treatment response and the evolution of different vascular phenotypes between the subsets. Responding tumors were characterized by a more angiogenic phenotype when analyzed with IHC, displaying higher vessel density, yet poorer vascular maturity and elevated hypoxia. Taken together, our findings indicate that PAT shows promise in providing an early indication of response or resistance to antiangiogenic therapy. SIGNIFICANCE: Photoacoustic assessment of tumor oxygenation is a noninvasive early indicator of response to bevacizumab therapy, clearly distinguishing between control, responding, and resistant tumors within just a few weeks of treatment.


Asunto(s)
Neoplasias de la Mama , Inhibidores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/uso terapéutico , Animales , Bevacizumab/farmacología , Bevacizumab/uso terapéutico , Neoplasias de la Mama/irrigación sanguínea , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/tratamiento farmacológico , Femenino , Hemoglobinas , Humanos , Ratones , Neovascularización Patológica/diagnóstico por imagen , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/genética , Receptores de Estrógenos , Tomografía
16.
Chem Commun (Camb) ; 58(12): 1962-1965, 2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35044383

RESUMEN

The development of divinylpyrimidine (DVP) reagents for the synthesis of antibody-drug conjugates (ADCs) with in vivo efficacy and tolerability is reported. Detailed structural characterisation of the synthesised ADCs was first conducted followed by in vitro and in vivo evaluation of the ADCs' ability to safely and selectively eradicate target-positive tumours.


Asunto(s)
Antineoplásicos Inmunológicos/farmacología , Inmunoconjugados/química , Indicadores y Reactivos/química , Pirimidinas/química , Animales , Antineoplásicos Inmunológicos/efectos adversos , Línea Celular Tumoral , Humanos , Inmunoconjugados/efectos adversos , Ratones , Prueba de Estudio Conceptual , Trastuzumab/efectos adversos , Trastuzumab/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Commun Biol ; 5(1): 10, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013537

RESUMEN

Hyperpolarized [1-13C]pyruvate enables direct in vivo assessment of real-time liver enzymatic activities by 13C magnetic resonance. However, the technique usually requires the injection of a highly supraphysiological dose of pyruvate. We herein demonstrate that liver metabolism can be measured in vivo with hyperpolarized [1-13C]pyruvate administered at two- to three-fold the basal plasma concentration. The flux through pyruvate dehydrogenase, assessed by 13C-labeling of bicarbonate in the fed condition, was found to be saturated or partially inhibited by supraphysiological doses of hyperpolarized [1-13C]pyruvate. The [13C]bicarbonate signal detected in the liver of fasted rats nearly vanished after treatment with a phosphoenolpyruvate carboxykinase (PEPCK) inhibitor, indicating that the signal originates from the flux through PEPCK. In addition, the normalized [13C]bicarbonate signal in fasted untreated animals is dose independent across a 10-fold range, highlighting that PEPCK and pyruvate carboxylase are not saturated and that hepatic gluconeogenesis can be directly probed in vivo with hyperpolarized [1-13C]pyruvate.


Asunto(s)
Bicarbonatos/metabolismo , Privación de Alimentos , Gluconeogénesis , Hígado/metabolismo , Ácido Pirúvico/metabolismo , Animales , Biomarcadores/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley
18.
Int J Biostat ; 18(2): 553-575, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34714982

RESUMEN

This paper considers the problem of semi-parametric proportional hazards model fitting where observed survival times contain event times and also interval, left and right censoring times. Although this is not a new topic, many existing methods suffer from poor computational performance. In this paper, we adopt a more versatile penalized likelihood method to estimate the baseline hazard and the regression coefficients simultaneously. The baseline hazard is approximated using basis functions such as M-splines. A penalty is introduced to regularize the baseline hazard estimate and also to ease dependence of the estimates on the knots of the basis functions. We propose a Newton-MI (multiplicative iterative) algorithm to fit this model. We also present novel asymptotic properties of our estimates, allowing for the possibility that some parameters of the approximate baseline hazard may lie on the parameter space boundary. Comparisons of our method against other similar approaches are made through an intensive simulation study. Results demonstrate that our method is very stable and encounters virtually no numerical issues. A real data application involving melanoma recurrence is presented and an R package 'survivalMPL' implementing the method is available on R CRAN.


Asunto(s)
Algoritmos , Proyectos de Investigación , Modelos de Riesgos Proporcionales , Funciones de Verosimilitud , Simulación por Computador
19.
EMBO Mol Med ; 13(8): e12881, 2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-34291583

RESUMEN

Glioma-derived cell-free DNA (cfDNA) is challenging to detect using liquid biopsy because quantities in body fluids are low. We determined the glioma-derived DNA fraction in cerebrospinal fluid (CSF), plasma, and urine samples from patients using sequencing of personalized capture panels guided by analysis of matched tumor biopsies. By sequencing cfDNA across thousands of mutations, identified individually in each patient's tumor, we detected tumor-derived DNA in the majority of CSF (7/8), plasma (10/12), and urine samples (10/16), with a median tumor fraction of 6.4 × 10-3 , 3.1 × 10-5 , and 4.7 × 10-5 , respectively. We identified a shift in the size distribution of tumor-derived cfDNA fragments in these body fluids. We further analyzed cfDNA fragment sizes using whole-genome sequencing, in urine samples from 35 glioma patients, 27 individuals with non-malignant brain disorders, and 26 healthy individuals. cfDNA in urine of glioma patients was significantly more fragmented compared to urine from patients with non-malignant brain disorders (P = 1.7 × 10-2 ) and healthy individuals (P = 5.2 × 10-9 ). Machine learning models integrating fragment length could differentiate urine samples from glioma patients (AUC = 0.80-0.91) suggesting possibilities for truly non-invasive cancer detection.


Asunto(s)
Ácidos Nucleicos Libres de Células , Glioma , Biomarcadores de Tumor , Glioma/genética , Humanos , Biopsia Líquida , Mutación , Plasma , Análisis de Secuencia de ADN
20.
Nat Commun ; 12(1): 1137, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33602918

RESUMEN

Adjuvant systemic therapies are now routinely used following resection of stage III melanoma, however accurate prognostic information is needed to better stratify patients. We use differential expression analyses of primary tumours from 204 RNA-sequenced melanomas within a large adjuvant trial, identifying a 121 metastasis-associated gene signature. This signature strongly associated with progression-free (HR = 1.63, p = 5.24 × 10-5) and overall survival (HR = 1.61, p = 1.67 × 10-4), was validated in 175 regional lymph nodes metastasis as well as two externally ascertained datasets. The machine learning classification models trained using the signature genes performed significantly better in predicting metastases than models trained with clinical covariates (pAUROC = 7.03 × 10-4), or published prognostic signatures (pAUROC < 0.05). The signature score negatively correlated with measures of immune cell infiltration (ρ = -0.75, p < 2.2 × 10-16), with a higher score representing reduced lymphocyte infiltration and a higher 5-year risk of death in stage II melanoma. Our expression signature identifies melanoma patients at higher risk of metastases and warrants further evaluation in adjuvant clinical trials.


Asunto(s)
Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Melanoma/genética , Bases de Datos Genéticas , Humanos , Aprendizaje Automático , Análisis Multivariante , Estadificación de Neoplasias , Pronóstico , Supervivencia sin Progresión , Modelos de Riesgos Proporcionales , Reproducibilidad de los Resultados , Factores de Tiempo , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA