Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 14: 1156733, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37929182

RESUMEN

Pythium oligandrum is a soil-borne oomycete associated with rhizosphere and root tissues. Its ability to enhance plant growth, stimulate plant immunity and parasitize fungal and oomycete preys has led to the development of agricultural biocontrol products. Meanwhile, the effect of P. oligandrum on mutualistic interactions and more generally on root microbial communities has not been investigated. Here, we developed a biological system comprising P. oligandrum interacting with two legume plants, Medicago truncatula and Pisum sativum. P. oligandrum activity was investigated at the transcriptomics level through an RNAseq approach, metabolomics and finally metagenomics to investigate the impact of P. oligandrum on root microbiota. We found that P. oligandrum promotes plant growth in these two species and protects them against infection by the oomycete Aphanomyces euteiches, a devastating legume root pathogen. In addition, P. oligandrum up-regulated more than 1000 genes in M. truncatula roots including genes involved in plant defense and notably in the biosynthesis of antimicrobial compounds and validated the enhanced production of M. truncatula phytoalexins, medicarpin and formononetin. Despite this activation of plant immunity, we found that root colonization by P. oligandrum did not impaired symbiotic interactions, promoting the formation of large and multilobed symbiotic nodules with Ensifer meliloti and did not negatively affect the formation of arbuscular mycorrhizal symbiosis. Finally, metagenomic analyses showed the oomycete modifies the composition of fungal and bacterial communities. Together, our results provide novel insights regarding the involvement of P. oligandrum in the functioning of plant root microbiota.

2.
Nat Plants ; 9(7): 1067-1080, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37322127

RESUMEN

Symbiotic interactions such as the nitrogen-fixing root nodule symbiosis (RNS) have structured ecosystems during the evolution of life. Here we aimed at reconstructing ancestral and intermediate steps that shaped RNS observed in extant flowering plants. We compared the symbiotic transcriptomic responses of nine host plants, including the mimosoid legume Mimosa pudica for which we assembled a chromosome-level genome. We reconstructed the ancestral RNS transcriptome composed of most known symbiotic genes together with hundreds of novel candidates. Cross-referencing with transcriptomic data in response to experimentally evolved bacterial strains with gradual symbiotic proficiencies, we found the response to bacterial signals, nodule infection, nodule organogenesis and nitrogen fixation to be ancestral. By contrast, the release of symbiosomes was associated with recently evolved genes encoding small proteins in each lineage. We demonstrate that the symbiotic response was mostly in place in the most recent common ancestor of the RNS-forming species more than 90 million years ago.


Asunto(s)
Fabaceae , Simbiosis , Simbiosis/fisiología , Ecosistema , Fijación del Nitrógeno/genética , Bacterias
3.
J Exp Bot ; 74(1): 194-213, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36197099

RESUMEN

Medicago truncatula NODULE ROOT1 (MtNOOT1) and Pisum sativum COCHLEATA1 (PsCOCH1) are orthologous genes belonging to the NOOT-BOP-COCH-LIKE (NBCL) gene family which encodes key transcriptional co-regulators of plant development. In Mtnoot1 and Pscoch1 mutants, the development of stipules, flowers, and symbiotic nodules is altered. MtNOOT2 and PsCOCH2 represent the single paralogues of MtNOOT1 and PsCOCH1, respectively. In M. truncatula, MtNOOT1 and MtNOOT2 are both required for the establishment and maintenance of symbiotic nodule identity. In legumes, the role of NBCL2 in above-ground development is not known. To better understand the roles of NBCL genes in legumes, we used M. truncatula and P. sativum nbcl mutants, isolated a knockout mutant for the PsCOCH2 locus and generated Pscoch1coch2 double mutants in P. sativum. Our work shows that single Mtnoot2 and Pscoch2 mutants develop wild-type stipules, flowers, and symbiotic nodules. However, the number of flowers was increased and the pods and seeds were smaller compared to the wild type. Furthermore, in comparison to the corresponding nbcl1 single mutants, both the M. truncatula and P. sativum nbcl double mutants show a drastic alteration in stipule, inflorescence, flower, and nodule development. Remarkably, in both M. truncatula and P. sativum nbcl double mutants, stipules are transformed into a range of aberrant leaf-like structures.


Asunto(s)
Medicago truncatula , Nódulos de las Raíces de las Plantas , Nódulos de las Raíces de las Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Pisum sativum/genética , Medicago truncatula/metabolismo , Simbiosis/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fijación del Nitrógeno/genética , Mutación
4.
mBio ; 12(2)2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33785618

RESUMEN

When engaging in symbiosis with legume hosts, rhizobia are confronted with environmental changes, including nutrient availability and stress exposure. Genetic circuits allow responding to these environmental stimuli to optimize physiological adaptations during the switch from the free-living to the symbiotic life style. A pivotal regulatory system of the nitrogen-fixing soybean endosymbiont Bradyrhizobium diazoefficiens for efficient symbiosis is the general stress response (GSR), which relies on the alternative sigma factor σEcfG However, the GSR-controlled process required for symbiosis has not been identified. Here, we demonstrate that biosynthesis of trehalose is under GSR control, and mutants lacking the respective biosynthetic genes otsA and/or otsB phenocopy GSR-deficient mutants under symbiotic and selected free-living stress conditions. The role of trehalose as a cytoplasmic chemical chaperone and stress protectant can be functionally replaced in an otsA or otsB mutant by introducing heterologous genetic pathways for biosynthesis of the chemically unrelated compatible solutes glycine betaine and (hydroxy)ectoine. Alternatively, uptake of exogenously provided trehalose also restores efficient symbiosis and tolerance to hyperosmotic and hyperionic stress of otsA mutants. Hence, elevated cytoplasmic trehalose levels resulting from GSR-controlled biosynthesis are crucial for B. diazoefficiens cells to overcome adverse conditions during early stages of host infection and ensure synchronization with root nodule development.IMPORTANCE The Bradyrhizobium-soybean symbiosis is of great agricultural significance and serves as a model system for fundamental research in bacterium-plant interactions. While detailed molecular insight is available about mutual recognition and early nodule organogenesis, our understanding of the host-imposed conditions and the physiology of infecting rhizobia during the transition from a free-living state in the rhizosphere to endosymbiotic bacteroids is currently limited. In this study, we show that the requirement of the rhizobial general stress response (GSR) during host infection is attributable to GSR-controlled biosynthesis of trehalose. Specifically, trehalose is crucial for an efficient symbiosis by acting as a chemical chaperone to protect rhizobia from osmostress during host infection.


Asunto(s)
Bradyrhizobium/metabolismo , Glycine max/microbiología , Trehalosa/metabolismo , Aminoácidos Diaminos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Betaína/metabolismo , Bradyrhizobium/genética , Presión Osmótica , Nodulación de la Raíz de la Planta , Nódulos de las Raíces de las Plantas/crecimiento & desarrollo , Nódulos de las Raíces de las Plantas/microbiología , Glycine max/crecimiento & desarrollo
5.
Plant Physiol ; 178(1): 295-316, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30026291

RESUMEN

Symbiotic interactions between legume plants and rhizobia result in the formation of nitrogen-fixing nodules, but the molecular actors and the mechanisms allowing for the maintenance of nodule identity are poorly understood. Medicago truncatula NODULE ROOT1 (MtNOOT1), Pisum sativum COCHLEATA1 (PsCOCH1), and Lotus japonicus NOOT-BOP-COCH-LIKE1 (LjNBCL1) are orthologs of Arabidopsis (Arabidopsis thaliana) AtBLADE-ON-PETIOLE1/2 and are members of the NBCL gene family, which has conserved roles in plant development and is essential for indeterminate and determinate nodule identity in legumes. The loss of function of MtNOOT1, PsCOCH1, and LjNBCL1 triggers a partial loss of nodule identity characterized by the development of ectopic roots arising from nodule vascular meristems. Here, we report the identification and characterization of a second gene involved in regulating indeterminate nodule identity in M. truncatula, MtNOOT2MtNOOT2 is the paralog of MtNOOT1 and belongs to a second legume-specific NBCL subclade, the NBCL2 clade. MtNOOT2 expression was induced during early nodule formation, and it was expressed primarily in the nodule central meristem. Mtnoot2 mutants did not present any particular symbiotic phenotype; however, the loss of function of both MtNOOT1 and MtNOOT2 resulted in the complete loss of nodule identity and was accompanied by drastic changes in the expression of symbiotic, defense, and root apical meristem marker genes. Mtnoot1 noot2 double mutants developed only nonfixing root-like structures that were no longer able to host symbiotic rhizobia. This study provides original insights into the molecular basis underlying nodule identity in legumes forming indeterminate nodules.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Medicago truncatula/genética , Proteínas de Plantas/genética , Nódulos de las Raíces de las Plantas/genética , Secuencia de Aminoácidos , Medicago truncatula/crecimiento & desarrollo , Medicago truncatula/metabolismo , Meristema/genética , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Mutación , Fijación del Nitrógeno/genética , Filogenia , Proteínas de Plantas/clasificación , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Nódulos de las Raíces de las Plantas/crecimiento & desarrollo , Nódulos de las Raíces de las Plantas/metabolismo , Homología de Secuencia de Aminoácido , Simbiosis/genética
6.
Cell Host Microbe ; 21(1): 106-112, 2017 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-28041928

RESUMEN

Arbuscular mycorrhizal (AM) symbiosis associates most plants with fungi of the phylum Glomeromycota. The fungus penetrates into roots and forms within cortical cell branched structures called arbuscules for nutrient exchange. We discovered that miR171b has a mismatched cleavage site and is unable to downregulate the miR171 family target gene, LOM1 (LOST MERISTEMS 1). This mismatched cleavage site is conserved among plants that establish AM symbiosis, but not in non-mycotrophic plants. Unlike other members of the miR171 family, miR171b stimulates AM symbiosis and is expressed specifically in root cells that contain arbuscules. MiR171b protects LOM1 from negative regulation by other miR171 family members. These findings uncover a unique mechanism of positive post-transcriptional regulation of gene expression by miRNAs and demonstrate its relevance for the establishment of AM symbiosis.


Asunto(s)
Glomeromycota/crecimiento & desarrollo , Medicago truncatula/genética , Medicago truncatula/microbiología , MicroARNs/genética , Micorrizas/crecimiento & desarrollo , Nicotiana/genética , Nicotiana/microbiología , Secuencia de Bases , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/microbiología , Simbiosis/fisiología
7.
Front Plant Sci ; 7: 1704, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27899928

RESUMEN

Arbuscular mycorrhizal (AM) symbiosis is an intimate and ancient symbiosis found between most of terrestrial plants and fungi from the Glomeromycota family. Later during evolution, the establishment of the nodulation between legume plants and soil bacteria known as rhizobia, involved several genes of the signaling pathway previously implicated for AM symbiosis. For the past years, the identification of the genes belonging to this Common Symbiotic Signaling Pathway have been mostly done on nodulation. Among the different genes already well identified as required for nodulation, we focused our attention on the involvement of Nodule Inception (NIN) in AM symbiosis. We show here that NIN expression is induced during AM symbiosis, and that the Medicago truncatula nin mutant is less colonized than the wild-type M. truncatula strain. Moreover, nin mutant displays a defect in the ability to be infected by the fungus Rhizophagus irregularis. This work brings a new evidence of the common genes involved in overlapping signaling pathways of both nodulation and in AM symbiosis.

8.
New Phytol ; 212(1): 22-35, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27292927

RESUMEN

Contents 22 I. 22 II. 24 III. 25 IV. 27 V. 29 VI. 10 31 References 32 SUMMARY: Plants have evolved a remarkable faculty of adaptation to deal with various and changing environmental conditions. In this context, the roots have taken over nutritional aspects and the root system architecture can be modulated in response to nutrient availability or biotic interactions with soil microorganisms. This adaptability requires a fine tuning of gene expression. Indeed, root specification and development are highly complex processes requiring gene regulatory networks involved in hormonal regulations and cell identity. Among the different molecular partners governing root development, microRNAs (miRNAs) are key players for the fast regulation of gene expression. miRNAs are small RNAs involved in most developmental processes and are required for the normal growth of organisms, by the negative regulation of key genes, such as transcription factors and hormone receptors. Here, we review the known roles of miRNAs in root specification and development, from the embryonic roots to the establishment of root symbioses, highlighting the major roles of miRNAs in these processes.


Asunto(s)
MicroARNs/metabolismo , Raíces de Plantas/anatomía & histología , Raíces de Plantas/genética , Meristema/genética , MicroARNs/genética , Nodulación de la Raíz de la Planta/genética , Raíces de Plantas/embriología , Simbiosis/genética
10.
New Phytol ; 209(1): 228-40, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26390061

RESUMEN

Plants are able to lose organs selectively through a process called abscission. This process relies on the differentiation of specialized territories at the junction between organs and the plant body that are called abscission zones (AZ). Several genes control the formation or functioning of these AZ. We have characterized BLADE-ON-PETIOLE (BOP) orthologues from several legume plants and studied their roles in the abscission process using a mutant approach. Here, we show that the Medicago truncatula NODULE ROOT (NOOT), the Pisum sativum COCHLEATA (COCH) and their orthologue in Lotus japonicus are strictly necessary for the abscission of not only petals, but also leaflets, leaves and fruits. We also showed that the expression pattern of the M. truncatula pNOOT::GUS fusion is associated with functional and vestigial AZs when expressed in Arabidopsis. In addition, we show that the stip mutant from Lupinus angustifolius, defective in stipule formation and leaf abscission, is mutated in a BOP orthologue. In conclusion, this study shows that this clade of proteins plays an important conserved role in promoting abscission of all aerial organs studied so far.


Asunto(s)
Fabaceae/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Arabidopsis/genética , Brassicaceae/genética , Análisis por Conglomerados , Productos Agrícolas , Fabaceae/fisiología , Lotus/genética , Lupinus/genética , Medicago truncatula/genética , Medicago truncatula/fisiología , Familia de Multigenes , Mutación , Pisum sativum/genética , Proteínas de Plantas/metabolismo
11.
RNA Biol ; 12(11): 1178-80, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26400469

RESUMEN

MicroRNAs (miRNAs) are short RNA molecules negatively regulating the expression of many important genes in plants and animals. We have recently shown that plant primary transcripts of miRNAs encode peptides (miPEPs) able to increase specifically the transcription of their associated miRNA.(1) We discuss here the possibility of using miPEPs as a new tool for functional analysis of single members of miRNA families in plants, including in non-model plants, that could avoid transgenic transformation and minimize artifactual interpretation. We also raise several fundamental and crucial questions that need to be address for a deeper understanding of the cellular and molecular mechanisms underlining the regulatory activity of miPEPs.


Asunto(s)
MicroARNs/genética , Péptidos/genética , Plantas/genética , Regulación de la Expresión Génica de las Plantas , Sistemas de Lectura Abierta , Péptidos/metabolismo , Plantas/metabolismo
12.
Nature ; 520(7545): 90-3, 2015 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-25807486

RESUMEN

MicroRNAs (miRNAs) are small regulatory RNA molecules that inhibit the expression of specific target genes by binding to and cleaving their messenger RNAs or otherwise inhibiting their translation into proteins. miRNAs are transcribed as much larger primary transcripts (pri-miRNAs), the function of which is not fully understood. Here we show that plant pri-miRNAs contain short open reading frame sequences that encode regulatory peptides. The pri-miR171b of Medicago truncatula and the pri-miR165a of Arabidopsis thaliana produce peptides, which we term miPEP171b and miPEP165a, respectively, that enhance the accumulation of their corresponding mature miRNAs, resulting in downregulation of target genes involved in root development. The mechanism of miRNA-encoded peptide (miPEP) action involves increasing transcription of the pri-miRNA. Five other pri-miRNAs of A. thaliana and M. truncatula encode active miPEPs, suggesting that miPEPs are widespread throughout the plant kingdom. Synthetic miPEP171b and miPEP165a peptides applied to plants specifically trigger the accumulation of miR171b and miR165a, leading to reduction of lateral root development and stimulation of main root growth, respectively, suggesting that miPEPs might have agronomical applications.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/genética , MicroARNs/genética , Péptidos/genética , Proteínas de Plantas/genética , Precursores del ARN/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Medicago truncatula/genética , Medicago truncatula/crecimiento & desarrollo , Medicago truncatula/metabolismo , Sistemas de Lectura Abierta/genética , Proteínas de Plantas/biosíntesis , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Transcripción Genética/genética
13.
Plant Physiol ; 166(1): 281-92, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25096975

RESUMEN

Most land plant species live in symbiosis with arbuscular mycorrhizal fungi. These fungi differentiate essential functional structures called arbuscules in root cortical cells from which mineral nutrients are released to the plant. We investigated the role of microRNA393 (miR393), an miRNA that targets several auxin receptors, in arbuscular mycorrhizal root colonization. Expression of the precursors of the miR393 was down-regulated during mycorrhization in three different plant species: Solanum lycopersicum, Medicago truncatula, and Oryza sativa. Treatment of S. lycopersicum, M. truncatula, and O. sativa roots with concentrations of synthetic auxin analogs that did not affect root development stimulated mycorrhization, particularly arbuscule formation. DR5-GUS, a reporter for auxin response, was preferentially expressed in root cells containing arbuscules. Finally, overexpression of miR393 in root tissues resulted in down-regulation of auxin receptor genes (transport inhibitor response1 and auxin-related F box) and underdeveloped arbuscules in all three plant species. These results support the conclusion that miR393 is a negative regulator of arbuscule formation by hampering auxin perception in arbuscule-containing cells.


Asunto(s)
Ácidos Indolacéticos/metabolismo , Magnoliopsida/microbiología , MicroARNs/metabolismo , Micorrizas/fisiología , Regulación de la Expresión Génica de las Plantas , Magnoliopsida/metabolismo , Simbiosis
14.
Plant Cell Environ ; 37(1): 54-69, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23639116

RESUMEN

[FeFe]-hydrogenase-like genes encode [Fe4 S4]-containing proteins that are ubiquitous in eukaryotic cells. In humans, iron-only hydrogenase-like protein 1 (IOP1) represses hypoxia inducible factor-1α subunit (HIF1-α) at normal atmospheric partial O2 pressure (normoxia, 21 kPa O2). In yeasts, the nar1 mutant cannot grow at 21 kPa O2, but can develop at a lower O2 pressure (2 kPa O2). We show here that plant [FeFe]-hydrogenase-like GOLLUM genes are essential for plant development and cell cycle progression. The mutant phenotypes of these plants are seen in normoxic conditions, but not under conditions of mild hypoxia (5 kPa O2). Transcriptomic and metabolomic experiments showed that the mutation enhances the expression of some hypoxia-induced genes under normal atmospheric O2 conditions and changes the cellular content of metabolites related to energy metabolism. In conclusion, [FeFe]-hydrogenase-like proteins play a central role in eukaryotes including the adaptation of plants to the ambient O2 partial pressure.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Hidrogenasas/genética , Proteínas Hierro-Azufre/genética , Medicago truncatula/enzimología , Oxígeno/metabolismo , Adaptación Fisiológica , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/fisiología , Metabolismo de los Hidratos de Carbono , Ciclo Celular , Regulación hacia Abajo , Metabolismo Energético , Regulación de la Expresión Génica de las Plantas , Hidrogenasas/metabolismo , Proteínas Hierro-Azufre/metabolismo , Medicago truncatula/genética , Medicago truncatula/fisiología , Metabolómica , Mutación , Fenotipo , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Plantones/enzimología , Plantones/genética , Plantones/fisiología , Estrés Fisiológico , Transcriptoma , Regulación hacia Arriba
15.
Plant Signal Behav ; 8(8)2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23733067

RESUMEN

Legume plants develop symbiosis specific organs on their roots as a result of their interaction with rhizobia. These organs, called nodules, house the nitrogen fixing bacteria. The molecular mechanisms governing the identity and maintenance of this organ are still poorly understood, but it is supposed that root and nodule development share common features. We have identified the Medicago truncatula nodule root (NOOT) and Pisum sativum cochleata (COCH) orthologous genes as necessary for the robust maintenance of nodule identity throughout the nodule developmental program. NOOT and COCH are Arabidopsis blade-on-petiole (BOP) orthologs and NOOT and COCH show functions in leaf and flower development in M. truncatula and P. sativum respectively that are conserved with the functions of BOP in Arabidopsis. The characterization of the noot and coch mutants highlights the root evolutionary origin of nodule vascular strands and suggests that the NOOT and COCH genes were recruited to repress root identity in the legume symbiotic organ.


Asunto(s)
Evolución Biológica , Proteínas de Plantas/metabolismo , Nódulos de las Raíces de las Plantas/metabolismo , Simbiosis , Arabidopsis/genética , Genes de Plantas , Ácidos Indolacéticos/metabolismo , Medicago truncatula/genética , Especificidad de Órganos/genética , Pisum sativum/genética , Proteínas de Plantas/genética , Nódulos de las Raíces de las Plantas/genética
16.
Plant Cell ; 24(11): 4498-510, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23136374

RESUMEN

During their symbiotic interaction with rhizobia, legume plants develop symbiosis-specific organs on their roots, called nodules, that house nitrogen-fixing bacteria. The molecular mechanisms governing the identity and maintenance of these organs are unknown. Using Medicago truncatula nodule root (noot) mutants and pea (Pisum sativum) cochleata (coch) mutants, which are characterized by the abnormal development of roots from the nodule, we identified the NOOT and COCH genes as being necessary for the robust maintenance of nodule identity throughout the nodule developmental program. NOOT and COCH are Arabidopsis thaliana BLADE-ON-PETIOLE orthologs, and we have shown that their functions in leaf and flower development are conserved in M. truncatula and pea. The identification of these two genes defines a clade in the BTB/POZ-ankyrin domain proteins that shares conserved functions in eudicot organ development and suggests that NOOT and COCH were recruited to repress root identity in the legume symbiotic organ.


Asunto(s)
Medicago truncatula/genética , Pisum sativum/genética , Proteínas de Plantas/genética , Sinorhizobium meliloti/fisiología , Arabidopsis/genética , Secuencia de Bases , Flores/citología , Flores/genética , Flores/crecimiento & desarrollo , Flores/microbiología , Regulación de la Expresión Génica de las Plantas , Medicago truncatula/citología , Medicago truncatula/crecimiento & desarrollo , Medicago truncatula/microbiología , Datos de Secuencia Molecular , Mutación , Fijación del Nitrógeno , Pisum sativum/crecimiento & desarrollo , Pisum sativum/microbiología , Fenotipo , Filogenia , Hojas de la Planta/citología , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/microbiología , Proteínas de Plantas/metabolismo , Raíces de Plantas/citología , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión , Nódulos de las Raíces de las Plantas/citología , Nódulos de las Raíces de las Plantas/genética , Nódulos de las Raíces de las Plantas/crecimiento & desarrollo , Nódulos de las Raíces de las Plantas/microbiología , Análisis de Secuencia de ADN , Simbiosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...