Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Bioinformatics ; 37(23): 4597-4598, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34613368

RESUMEN

SUMMARY: The global response to the COVID-19 pandemic has led to a rapid increase of scientific literature on this deadly disease. Extracting knowledge from biomedical literature and integrating it with relevant information from curated biological databases is essential to gain insight into COVID-19 etiology, diagnosis and treatment. We used Semantic Web technology RDF to integrate COVID-19 knowledge mined from literature by iTextMine, PubTator and SemRep with relevant biological databases and formalized the knowledge in a standardized and computable COVID-19 Knowledge Graph (KG). We published the COVID-19 KG via a SPARQL endpoint to support federated queries on the Semantic Web and developed a knowledge portal with browsing and searching interfaces. We also developed a RESTful API to support programmatic access and provided RDF dumps for download. AVAILABILITY AND IMPLEMENTATION: The COVID-19 Knowledge Graph is publicly available under CC-BY 4.0 license at https://research.bioinformatics.udel.edu/covid19kg/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
COVID-19 , Semántica , Humanos , Pandemias , Reconocimiento de Normas Patrones Automatizadas , Bases de Datos Factuales
2.
Sci Data ; 7(1): 337, 2020 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-33046717

RESUMEN

The Protein Ontology (PRO) provides an ontological representation of protein-related entities, ranging from protein families to proteoforms to complexes. Protein Ontology Linked Open Data (LOD) exposes, shares, and connects knowledge about protein-related entities on the Semantic Web using Resource Description Framework (RDF), thus enabling integration with other Linked Open Data for biological knowledge discovery. For example, proteins (or variants thereof) can be retrieved on the basis of specific disease associations. As a community resource, we strive to follow the Findability, Accessibility, Interoperability, and Reusability (FAIR) principles, disseminate regular updates of our data, support multiple methods for accessing, querying and downloading data in various formats, and provide documentation both for scientists and programmers. PRO Linked Open Data can be browsed via faceted browser interface and queried using SPARQL via YASGUI. RDF data dumps are also available for download. Additionally, we developed RESTful APIs to support programmatic data access. We also provide W3C HCLS specification compliant metadata description for our data. The PRO Linked Open Data is available at https://lod.proconsortium.org/ .


Asunto(s)
Descubrimiento del Conocimiento , Proteínas/química , Web Semántica , Conjuntos de Datos como Asunto , Programas Informáticos
3.
Adv Biosyst ; 4(9): e2000119, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32603024

RESUMEN

Late recurrences of breast cancer are hypothesized to originate from disseminated tumor cells that re-activate after a long period of dormancy, ≥5 years for estrogen-receptor positive (ER+) tumors. An outstanding question remains as to what the key microenvironment interactions are that regulate this complex process, and well-defined human model systems are needed for probing this. Here, a robust, bioinspired 3D ER+ dormancy culture model is established and utilized to probe the effects of matrix properties for common sites of late recurrence on breast cancer cell dormancy. Formation of dormant micrometastases over several weeks is examined for ER+ cells (T47D, BT474), where the timing of entry into dormancy versus persistent growth depends on matrix composition and cell type. In contrast, triple negative cells (MDA-MB-231), associated with early recurrence, are not observed to undergo long-term dormancy. Bioinformatic analyses quantitatively support an increased "dormancy score" gene signature for ER+ cells (T47D) and reveal differential expression of genes associated with different biological processes based on matrix composition. Further, these analyses support a link between dormancy and autophagy, a potential survival mechanism. This robust model system will allow systematic investigations of other cell-microenvironment interactions in dormancy and evaluation of therapeutics for preventing late recurrence.


Asunto(s)
Neoplasias de la Mama , Técnicas de Cultivo de Célula/métodos , Modelos Biológicos , Receptores de Estrógenos/metabolismo , Microambiente Tumoral/fisiología , Autofagia , Neoplasias de la Mama/química , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/fisiopatología , Línea Celular Tumoral , Matriz Extracelular/metabolismo , Femenino , Humanos , Biología Sintética
4.
APL Bioeng ; 3(1): 016101, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31069334

RESUMEN

The extracellular matrix (ECM) is thought to play a critical role in the progression of breast cancer. In this work, we have designed a photopolymerizable, biomimetic synthetic matrix for the controlled, 3D culture of breast cancer cells and, in combination with imaging and bioinformatics tools, utilized this system to investigate the breast cancer cell response to different matrix cues. Specifically, hydrogel-based matrices of different densities and modified with receptor-binding peptides derived from ECM proteins [fibronectin/vitronectin (RGDS), collagen (GFOGER), and laminin (IKVAV)] were synthesized to mimic key aspects of the ECM of different soft tissue sites. To assess the breast cancer cell response, the morphology and growth of breast cancer cells (MDA-MB-231 and T47D) were monitored in three dimensions over time, and differences in their transcriptome were assayed using next generation sequencing. We observed increased growth in response to GFOGER and RGDS, whether individually or in combination with IKVAV, where binding of integrin ß1 was key. Importantly, in matrices with GFOGER, increased growth was observed with increasing matrix density for MDA-MB-231s. Further, transcriptomic analyses revealed increased gene expression and enrichment of biological processes associated with cell-matrix interactions, proliferation, and motility in matrices rich in GFOGER relative to IKVAV. In sum, a new approach for investigating breast cancer cell-matrix interactions was established with insights into how microenvironments rich in collagen promote breast cancer growth, a hallmark of disease progression in vivo, with opportunities for future investigations that harness the multidimensional property control afforded by this photopolymerizable system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...