Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38779754

RESUMEN

We have previously observed that prolonged administration of rapamycin, an inhibitor targeting the mammalian target of rapamycin 1 (mTORC1), partially reduced hypertension and alleviated kidney inflammation in Dahl salt-sensitive (SS) rats. In contrast, treatment with PP242, an inhibitor affecting both mTORC1/mTORC2, not only completely prevented hypertension but also provided substantial protection against kidney injury. Notably, PP242 exhibited potent natriuretic effects that were not evident with rapamycin. The primary objective of this study was to pinpoint the specific tubular sites responsible for the natriuretic effect of PP242 in SS rats subjected to either 0.4% NaCl (NS) or 4.0% NaCl (HS) diet. Acute effects of PP242 on natriuretic, diuretic, and kaliuretic responses were determined in unanesthetized SS rats utilizing benzamil, furosemide, or hydrochlorothiazide (inhibitors of ENaC, NKCC2, or NCC, respectively) either administered alone or in combination. The findings indicate that the natriuretic effects of PP242 in SS rats stem predominantly from the inhibition of NCC and a reduction of ENaC open probability. Molecular analysis revealed that mTORC2 regulates NCC activity through protein phosphorylation and ENaC activity through proteolytic cleavage in vivo. Evidence also indicated that PP242 also prevents the loss of K+ associated with the inhibition of NCC. These findings suggest that PP242 may represent an improved therapeutic approach for antihypertensive intervention, potentially controlling blood pressure and mitigating kidney injury in salt-sensitive human subjects.

2.
Hypertension ; 81(2): 229-239, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38031837

RESUMEN

Essential hypertension, a multifaceted disorder, is a worldwide health problem. A complex network of genetic, epigenetic, physiological, and environmental components regulates blood pressure (BP), and any dysregulation of this network may result in hypertension. Growing evidence suggests a role for epigenetic factors in BP regulation. Any alterations in the expression or functions of these epigenetic regulators may dysregulate various determinants of BP, thereby promoting the development of hypertension. Histone posttranslational modifications are critical epigenetic regulators that have been implicated in hypertension. Several studies have demonstrated a clear association between the increased expression of some histone-modifying enzymes, especially HDACs (histone deacetylases), and hypertension. In addition, treatment with HDAC inhibitors lowers BP in hypertensive animal models, providing an excellent opportunity to design new drugs to treat hypertension. In this review, we discuss the potential contribution of different histone modifications to the regulation of BP.


Asunto(s)
Código de Histonas , Hipertensión , Animales , Histonas , Hipertensión/tratamiento farmacológico , Hipertensión/genética , Hipertensión Esencial , Procesamiento Proteico-Postraduccional , Epigénesis Genética
3.
Function (Oxf) ; 4(5): zqad038, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37575476

RESUMEN

Integrated computational modeling provides a mechanistic and quantitative framework to characterize alterations in mitochondrial respiration and bioenergetics in response to different metabolic substrates in-silico. These alterations play critical roles in the pathogenesis of diseases affecting metabolically active organs such as heart and kidney. Therefore, the present study aimed to develop and validate thermodynamically constrained integrated computational models of mitochondrial respiration and bioenergetics in the heart and kidney cortex and outer medulla (OM). The models incorporated the kinetics of major biochemical reactions and transport processes as well as regulatory mechanisms in the mitochondria of these tissues. Intrinsic model parameters such as Michaelis-Menten constants were fixed at previously estimated values, while extrinsic model parameters such as maximal reaction and transport velocities were estimated separately for each tissue. This was achieved by fitting the model solutions to our recently published respirometry data measured in isolated rat heart and kidney cortex and OM mitochondria utilizing various NADH- and FADH2-linked metabolic substrates. The models were validated by predicting additional respirometry and bioenergetics data, which were not used for estimating the extrinsic model parameters. The models were able to predict tissue-specific and substrate-dependent mitochondrial emergent metabolic system properties such as redox states, enzyme and transporter fluxes, metabolite concentrations, membrane potential, and respiratory control index under diverse physiological and pathological conditions. The models were also able to quantitatively characterize differential regulations of NADH- and FADH2-linked metabolic pathways, which contribute differently toward regulations of oxidative phosphorylation and ATP synthesis in the heart and kidney cortex and OM mitochondria.


Asunto(s)
NAD , Consumo de Oxígeno , Ratas , Animales , NAD/metabolismo , Metabolismo Energético/fisiología , Mitocondrias/metabolismo , Respiración , Corteza Renal/metabolismo , Riñón/metabolismo , Simulación por Computador
4.
Function (Oxf) ; 4(5): zqad031, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37575482

RESUMEN

In this study, novel methods were developed, which allowed continuous (24/7) measurement of arterial blood pressure and renal blood flow in freely moving rats and the intermittent collection of arterial and renal venous blood to estimate kidney metabolic fluxes of O2 and metabolites. Specifically, the study determined the effects of a high salt (HS; 4.0% NaCl) diet upon whole kidney O2 consumption and arterial and renal venous plasma metabolomic profiles of normal Sprague-Dawley rats. A separate group of rats was studied to determine changes in the cortex and outer medulla tissue metabolomic and mRNAseq profiles before and following the switch from a 0.4% to 4.0% NaCl diet. In addition, targeted mRNA expression analysis of cortical segments was performed. Significant changes in the metabolomic and transcriptomic profiles occurred with feeding of the HS diet. A progressive increase of kidney O2 consumption was found despite a reduction in expression of most of the mRNA encoding enzymes of TCA cycle. A novel finding was the increased expression of glycolysis-related genes in Cx and isolated proximal tubular segments in response to an HS diet, consistent with increased release of pyruvate and lactate from the kidney to the renal venous blood. Data suggests that aerobic glycolysis (eg, Warburg effect) may contribute to energy production under these circumstances. The study provides evidence that kidney metabolism responds to an HS diet enabling enhanced energy production while protecting from oxidative stress and injury. Metabolomic and transcriptomic analysis of kidneys of Sprague-Dawley rats fed a high salt diet.


Asunto(s)
Cloruro de Sodio Dietético , Cloruro de Sodio , Ratas , Animales , Ratas Sprague-Dawley , Cloruro de Sodio Dietético/metabolismo , Cloruro de Sodio/metabolismo , Presión Sanguínea , Riñón , ARN Mensajero
5.
BMC Genomics ; 24(1): 371, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37394518

RESUMEN

BACKGROUND: A common feature of single-cell RNA-seq (scRNA-seq) data is that the number of cells in a cell cluster may vary widely, ranging from a few dozen to several thousand. It is not clear whether scRNA-seq data from a small number of cells allow robust identification of differentially expressed genes (DEGs) with various characteristics. RESULTS: We addressed this question by performing scRNA-seq and poly(A)-dependent bulk RNA-seq in comparable aliquots of human induced pluripotent stem cells-derived, purified vascular endothelial and smooth muscle cells. We found that scRNA-seq data needed to have 2,000 or more cells in a cluster to identify the majority of DEGs that would show modest differences in a bulk RNA-seq analysis. On the other hand, clusters with as few as 50-100 cells may be sufficient for identifying the majority of DEGs that would have extremely small p values or transcript abundance greater than a few hundred transcripts per million in a bulk RNA-seq analysis. CONCLUSION: Findings of the current study provide a quantitative reference for designing studies that aim for identifying DEGs for specific cell clusters using scRNA-seq data and for interpreting results of such studies.


Asunto(s)
Perfilación de la Expresión Génica , Células Madre Pluripotentes Inducidas , Humanos , Perfilación de la Expresión Génica/métodos , Análisis de Expresión Génica de una Sola Célula , RNA-Seq , Análisis de la Célula Individual/métodos , Análisis de Secuencia de ARN/métodos
6.
Arch Biochem Biophys ; 744: 109690, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37429534

RESUMEN

Mitochondria are major sources of reactive oxygen species (ROS), which play important roles in both physiological and pathological processes. However, the specific contributions of different ROS production and scavenging components in the mitochondria of metabolically active tissues such as heart and kidney cortex and outer medulla (OM) are not well understood. Therefore, the goal of this study was to determine contributions of different ROS production and scavenging components and provide detailed comparisons of mitochondrial respiration, bioenergetics, ROS emission between the heart and kidney cortex and OM using tissues obtained from the same Sprague-Dawley rat under identical conditions and perturbations. Specifically, data were obtained using both NADH-linked substrate pyruvate + malate and FADH2-linked substrate succinate followed by additions of inhibitors of different components of the electron transport chain (ETC) and oxidative phosphorylation (OxPhos) and other ROS production and scavenging systems. Currently, there is limited data available for the mitochondria of kidney cortex and OM, the two major energy-consuming tissues in the body only next to the heart, and scarce quantitative information on the interplay between mitochondrial ROS production and scavenging systems in the three tissues. The findings from this study demonstrate significant differences in mitochondrial respiratory and bioenergetic functions and ROS emission among the three tissues. The results quantify the rates of ROS production from different complexes of the ETC, identify the complexes responsible for variations in mitochondrial membrane depolarization and regulations of ROS production, and quantify the contributions of ROS scavenging enzymes towards overall mitochondrial ROS emission. These findings advance our fundamental knowledge of tissue-specific and substrate-dependent mitochondrial respiratory and bioenergetic functions and ROS emission. This is important given the critical role that excess ROS production, oxidative stress, and mitochondrial dysfunction in the heart and kidney cortex and OM play in the pathogenesis of cardiovascular and renal diseases, including salt-sensitive hypertension.


Asunto(s)
Mitocondrias , NAD , Ratas , Animales , Especies Reactivas de Oxígeno/metabolismo , NAD/metabolismo , Ratas Sprague-Dawley , Mitocondrias/metabolismo , Metabolismo Energético , Corteza Renal/metabolismo
7.
Front Digit Health ; 5: 1132446, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37255961

RESUMEN

Background: Conflicting reports from varying stakeholders related to prognosis and outcomes following placement of temporomandibular joint (TMJ) implants gave rise to the development of the TMJ Patient-Led RoundTable initiative. Following an assessment of the current availability of data, the RoundTable concluded that a strategically Coordinated Registry Network (CRN) is needed to collect and generate accessible data on temporomandibular disorder (TMD) and its care. The aim of this study was therefore to advance the clinical understanding, usage, and adoption of a core minimum dataset for TMD patients as the first foundational step toward building the CRN. Methods: Candidate data elements were extracted from existing data sources and included in a Delphi survey administered to 92 participants. Data elements receiving less than 75% consensus were dropped. A purposive multi-stakeholder sub-group triangulated the items across patient and clinician-based experience to remove redundancies or duplicate items and reduce the response burden for both patients and clinicians. To reliably collect the identified data elements, the identified core minimum data elements were defined in the context of technical implementation within High-performance Integrated Virtual Environment (HIVE) web-application framework. HIVE was integrated with CHIOS™, an innovative permissioned blockchain platform, to strengthen the provenance of data captured in the registry and drive metadata to record all registry transaction and create a robust consent network. Results: A total of 59 multi-stakeholder participants responded to the Delphi survey. The completion of the Delphi surveys followed by the application of the required group consensus threshold resulted in the selection of 397 data elements (254 for patient-generated data elements and 143 for clinician generated data elements). The infrastructure development and integration of HIVE and CHIOS™ was completed showing the maintenance of all data transaction information in blockchain, flexible recording of patient consent, data cataloging, and consent validation through smart contracts. Conclusion: The identified data elements and development of the technological platform establishes a data infrastructure that facilitates the standardization and harmonization of data as well as perform high performance analytics needed to fully leverage the captured patient-generated data, clinical evidence, and other healthcare ecosystem data within the TMJ/TMD-CRN.

8.
bioRxiv ; 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36711564

RESUMEN

In the present study, novel methods were developed which allowed continuous (24/7) measurement of blood pressure (BP) and renal blood flow (RBF) in freely moving rats and the intermittent collection of arterial and renal venous blood to estimate kidney metabolic fluxes of O 2 and metabolites. The study determined the effects of a high salt (HS) diet upon whole kidney O 2 consumption and the metabolomic profiles of normal Sprague Dawley (SD) rats. A separate group of rats was studied to determine changes in the cortex (Cx) and outer medulla (OM) tissue metabolomic and mRNAseq profiles before and following the switch from a 0.4% to a 4.0% NaCl diet. Significant changes in the metabolomic and transcriptomic profiles occurred with feeding of the HS diet. A progressive increase of kidney O 2 consumption was found despite a reduction in expression of most of the mRNA encoding enzymes of TCA cycle. Increased glycolysis was evident with the elevation of mRNA expression encoding key glycolytic enzymes and release of pyruvate and lactate from the kidney in the renal venous blood. Glycolytic production of NADH is used in either the production of lactate or oxidized via the malate aspartate shuttle. Aerobic glycolysis (e.g., Warburg-effect) may account for the needed increase in cellular energy. The study provides evidence that kidney metabolism responds to a HS diet enabling enhanced energy production while protecting from oxidate stress and injury.

9.
Am J Physiol Renal Physiol ; 324(2): F193-F210, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36475869

RESUMEN

Chronic kidney disease (CKD) has a strong genetic component; however, the underlying pathways are not well understood. Dahl salt-sensitive (SS)/Jr rats spontaneously develop CKD with age and are used to investigate the genetic determinants of CKD. However, there are currently several genetically diverse Dahl SS rats maintained at various institutions and the extent to which some exhibit age-related CKD is unclear. We assessed glomerulosclerosis (GS) and tubulointerstitial fibrosis (TIF) in 3- and 6-mo-old male and female SS/JrHsdMcwi, BN/NHsd/Mcwi [Brown-Norway (BN)], and consomic SS-Chr 1BN/Mcwi (SS.BN1) rats, in which chromosome 1 from the BN rat was introgressed into the genome of the SS/JrHsdMcwi rat. Rats were fed a 0.4% NaCl diet. GS (31 ± 3% vs. 7 ± 1%) and TIF (2.3 ± 0.2 vs. 0.5 ± 0.1) were significantly greater in 6-mo-old compared with 3-mo-old SS/JrHsdMcwi rats, and CKD was exacerbated in males. GS was minimal in 6- and 3-mo-old BN (3.9 ± 0.6% vs. 1.2 ± 0.4%) and SS.BN1 (2.4 ± 0.5% vs. 1.0 ± 0.3%) rats, and neither exhibited TIF. In SS/JrHsdMcwi and SS.BN1 rats, mean arterial blood pressure was significantly greater in 6-mo-old compared with 3-mo-old SS/JrHsdMcwi (162 ± 4 vs. 131 ± 2 mmHg) but not SS.BN1 (115 ± 2 vs. 116 ± 1 mmHg) rats. In 6-mo-old SS/JrHsdMcwi rats, blood pressure was significantly greater in females. RNA-sequencing analysis revealed that inflammatory pathways were upregulated in isolated medullary thick ascending tubules in 7-wk-old SS/JrHsdMcwi rats, before the development of tubule pathology, compared with SS.BN1 rats. In summary, SS/JrHsdMcwi rats exhibit robust age-related progression of medullary thick ascending limb abnormalities, CKD, and hypertension, and gene(s) on chromosome 1 have a major pathogenic role in such changes.NEW & NOTEWORTHY This study shows that the robust age-related progression of kidney disease in Dahl SS/JrHsdMcw rats maintained on a normal-salt diet is abolished in consomic SS.BN1 rats. Evidence that medullary thick ascending limb segments of SS/JrHsdMcw rats are structurally abnormal and enriched in proinflammatory pathways before the development of protein casts provides new insights into the pathogenesis of kidney disease in this model.


Asunto(s)
Hipertensión , Enfermedades Renales , Femenino , Humanos , Ratas , Masculino , Animales , Regulación hacia Arriba , Cromosomas Humanos Par 1 , Ratas Endogámicas Dahl , Hipertensión/genética , Ratas Endogámicas BN , Cloruro de Sodio Dietético , Cloruro de Sodio
12.
Function (Oxf) ; 3(2): zqac006, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35399492
13.
Hypertension ; 79(6): 1180-1189, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35291809

RESUMEN

BACKGROUND: The present study in Sprague-Dawley rats determined the effects of a rapid rise of renal perfusion pressure (RPP) upon the activation of mTOR (mechanistic target of rapamycin), and the effects upon the infiltration of CD68-positive macrophages/monocytes and CD3-positive T lymphocytes into the kidneys. METHODS: RPP was elevated by 40 mm Hg for 30 minutes in male Sprague-Dawley rats while measuring renal blood flow and urine flow rate. Sham rats were studied in the same way, but RPP was not changed. Since initial studies found that the acute increase of RPP resulted in activation of mTORC1 (phosphorylation of S6S235/236), the effects of inhibition of mTORC1 with rapamycin pretreatment were then determined. RESULTS: It was found that a 30-minute increase of RPP (≈40 mm Hg) resulted in an 8-fold increase of renal sodium excretion which was blunted by rapamycin treatment. Renal blood flow was not affected by the elevation of RPP. Activation of mTORC1 was observed. Significant increases in CD68-positive macrophages were found in both the cortex (intraglomerular and periglomerular regions) and in the outer medullary interstitial regions of the kidney and prevented by rapamycin treatment. Increases in CD3-positive T lymphocytes were observed exclusively in the periglomerular regions and prevented by rapamycin treatment. Upregulation of several proinflammatory markers was observed. CONCLUSIONS: We conclude that elevation of RPP rapidly activates mTORC1 resulting in infiltration of immune cells into the kidney.


Asunto(s)
Riñón , Circulación Renal , Animales , Presión Sanguínea/fisiología , Leucocitos , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Perfusión , Ratas , Ratas Sprague-Dawley , Circulación Renal/fisiología , Sirolimus/farmacología
14.
Am J Physiol Renal Physiol ; 322(5): F473-F485, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35224992

RESUMEN

Although the molecular and functional responses related to renal compensatory hypertrophy after unilateral nephrectomy (UNX) has been well described, many aspects of these events remain unclear. One question is how the remaining kidney senses the absence of the contralateral organ, and another is what the role of the renin-angiotensin system is in these responses. Both acute anesthetized and chronic unanesthetized experiments were performed using the angiotensin II type 1 receptor blocker losartan and the renin inhibitor aliskiren to determine the contribution of the renin-angiotensin system to immediate changes and losartan for chronic changes of renal blood flow (RBF) and the associated hypertrophic events in male Sprague-Dawley rats. Chronic experiments used implanted RBF probes and arterial catheters for continuous data collection, and the glomerular filtration rate was determined by noninvasive transcutaneous FITC-sinistrin measurements. The results of the acute experiments found that RBF increased nearly 25% (4.6 ± 0.5 to 5.6 ± 0.6 mL/min/g kidney wt) during the first 15 min following UNX and that this response was abolished by losartan (6.7 ± 0.7 to 7.0 ± 0.7 mL/min/g kidney wt) or aliskiren (5.8 ± 0.4 to 6.0 ± 0.4 mL/min/g kidney wt) treatment. Thereafter, RBF increased progressively over 7 days, and kidney weight increased by 19% of pre-UNX values. When normalized to kidney weight determined at day 7 after UNX, RBF was not significantly different from pre-UNX levels. Semiquantification of CD31-positive capillaries revealed increases of the glomeruli and peritubular capillaries that paralleled the kidney hypertrophy. None of these chronic changes was inhibited by losartan treatment, indicating that neither the compensatory structural nor the RBF changes were angiotensin II type 1 receptor dependent.NEW & NOTEWORTHY This study found that the immediate increases of renal blood flow (RBF) following unilateral nephrectomy (UNX) are a consequence of reduced angiotensin II type 1 (AT1) receptor stimulation. The continuous monitoring of RBF and intermittent measurement of glomerular filtration rate (GFR) in conscious rats during the 1-wk period of rapid hypertrophy following UNX provided unique insights into the regulation of RBF and GFR when faced with increased metabolic loads. It was found that neither kidney hypertrophy nor the associated increase of capillaries was an AT1-dependent phenomenon.


Asunto(s)
Angiotensina II , Nefrectomía , Angiotensina II/farmacología , Animales , Riñón , Losartán/farmacología , Masculino , Ratas , Ratas Sprague-Dawley , Circulación Renal , Sistema Renina-Angiotensina
15.
J Vis Exp ; (180)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35225288

RESUMEN

The kidneys play a crucial role in maintaining the homeostasis of body fluids. The regulation of renal blood flow (RBF) is essential to the vital functions of filtration and metabolism in kidney function. Many acute studies have been carried out in anesthetized animals to measure RBF under various conditions to determine mechanisms responsible for the regulation of kidney perfusion. However, for technical reasons, it has not been possible to measure RBF continuously (24 h/day) in unrestrained unanesthetized rats over prolonged periods. These methods allow the continuous determination of RBF over many weeks while also simultaneously recording blood pressure (BP) with implanted catheters (fluid-filled or by telemetry). RBF monitoring is carried out with rats placed in a circular servo-controlled rat cage that enables the unrestrained movement of the rat throughout the study. At the same time, the tangling of cables from the flow probe and arterial catheters is prevented. Rats are first instrumented with an ultrasonic flow probe placement on the left renal artery and an arterial catheter implanted in the right femoral artery. These are routed subcutaneously to the nape of the neck, and connected to the flowmeter and pressure transducer, respectively, to measure RBF and BP. Following surgical implantation, rats are immediately placed in the cage to recover for at least one week and stabilize the ultrasonic probe recordings. Urine collection is also feasible in this system. The surgical and post-surgical procedures for continuous monitoring are demonstrated in this protocol.


Asunto(s)
Riñón , Circulación Renal , Animales , Presión Sanguínea , Estado de Conciencia , Riñón/irrigación sanguínea , Ratas , Arteria Renal , Circulación Renal/fisiología
16.
Hypertension ; 79(4): 761-772, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34994206

RESUMEN

BACKGROUND: Epigenetic marks (eg, DNA methylation) may capture the effect of gene-environment interactions. DNA methylation is involved in blood pressure (BP) regulation and hypertension development; however, no studies have evaluated its relationship with 24-hour BP phenotypes (daytime, nighttime, and 24-hour average BPs). METHODS: We examined the association of whole blood DNA methylation with 24-hour BP phenotypes and clinic BPs in a discovery cohort of 281 Blacks participants using reduced representation bisulfite sequencing. We developed a deep and region-specific methylation sequencing method, Bisulfite ULtrapLEx Targeted Sequencing and utilized it to validate our findings in a separate validation cohort (n=117). RESULTS: Analysis of 38 215 DNA methylation regions (MRs), derived from 1 549 368 CpG sites across the genome, identified up to 72 regions that were significantly associated with 24-hour BP phenotypes. No MR was significantly associated with clinic BP. Two to 3 MRs were significantly associated with various 24-hour BP phenotypes after adjustment for age, sex, and body mass index. Together, these MRs explained up to 16.5% of the variance of 24-hour average BP, while age, sex, and BMI explained up to 11.0% of the variance. Analysis of one of the MRs in an independent cohort using Bisulfite ULtrapLEx Targeted Sequencing confirmed its association with 24-hour average BP phenotype. CONCLUSIONS: We identified several MRs that explain a substantial portion of variances in 24-hour BP phenotypes, which might be excellent markers of cumulative effect of factors influencing 24-hour BP levels. The Bisulfite ULtrapLEx Targeted Sequencing workflow has potential to be suitable for clinical testing and population screenings on a large scale.


Asunto(s)
Metilación de ADN , Hipertensión , Presión Sanguínea/genética , Islas de CpG/genética , Interacción Gen-Ambiente , Humanos , Hipertensión/diagnóstico , Hipertensión/genética , Fenotipo
18.
Biochim Biophys Acta Bioenerg ; 1863(2): 148518, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34864090

RESUMEN

The kinetics and efficiency of mitochondrial oxidative phosphorylation (OxPhos) can depend on the choice of respiratory substrates. Furthermore, potential differences in this substrate dependency among different tissues are not well-understood. Here, we determined the effects of different substrates on the kinetics and efficiency of OxPhos in isolated mitochondria from the heart and kidney cortex and outer medulla (OM) of Sprague-Dawley rats. The substrates were pyruvate+malate, glutamate+malate, palmitoyl-carnitine+malate, alpha-ketoglutarate+malate, and succinate±rotenone at saturating concentrations. The kinetics of OxPhos were interrogated by measuring mitochondrial bioenergetics under different ADP perturbations. Results show that the kinetics and efficiency of OxPhos are highly dependent on the substrates used, and this dependency is distinctly different between heart and kidney. Heart mitochondria showed higher respiratory rates and OxPhos efficiencies for all substrates in comparison to kidney mitochondria. Cortex mitochondria respiratory rates were higher than OM mitochondria, but OM mitochondria OxPhos efficiencies were higher than cortex mitochondria. State 3 respiration was low in heart mitochondria with succinate but increased significantly in the presence of rotenone, unlike kidney mitochondria. Similar differences were observed in mitochondrial membrane potential. Differences in H2O2 emission in the presence of succinate±rotenone were observed in heart mitochondria and to a lesser extent in OM mitochondria, but not in cortex mitochondria. Bioenergetics and H2O2 emission data with succinate±rotenone indicate that oxaloacetate accumulation and reverse electron transfer may play a more prominent regulatory role in heart mitochondria than kidney mitochondria. These studies provide novel quantitative data demonstrating that the choice of respiratory substrates affects mitochondrial responses in a tissue-specific manner.


Asunto(s)
Peróxido de Hidrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA