Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Physiol ; 13: 1004099, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36388112

RESUMEN

Mitochondria contain their own DNA, mitochondrial DNA, which encodes thirteen proteins. However, mitochondria require thousands of proteins encoded in the nucleus to carry out their many functions. Identifying the definitive mitochondrial proteome has been challenging as methods isolating mitochondrial proteins differ and different tissues and organisms may have specialized proteomes. Mitochondrial diseases arising from single gene mutations in nucleus encoded genes could affect the mitochondrial proteome, but deciphering which effects are due to loss of specific pathways or to accumulated general mitochondrial damage is difficult. To identify specific versus general effects, we have taken advantage of mutations in three Drosophila genes, clueless, Sod2, and Pink1, which are required for mitochondrial function through different pathways. We measured changes in each mutant's mitochondrial proteome using quantitative tandem mass tag mass spectrometry. Our analysis identified protein classes that are unique to each mutant and those shared between them, suggesting that some changes in the mitochondrial proteome are due to general mitochondrial damage whereas others are gene specific. For example, clueless mutants had the greatest number of less and more abundant mitochondrial proteins whereas loss of all three genes increased stress and metabolism proteins. This study is the first to directly compare in vivo steady state levels of mitochondrial proteins by examining loss of three pathways critical for mitochondrial function. These data could be useful to understand disease etiology, and how mutations in genes critical for mitochondrial function cause specific mitochondrial proteomic changes as opposed to changes due to generalized mitochondrial damage.

2.
Front Cell Dev Biol ; 10: 788516, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35663400

RESUMEN

In this study, we examine the cause and progression of mitochondrial diseases linked to the loss of mtRNase P, a three-protein complex responsible for processing and cleaving mitochondrial transfer RNAs (tRNA) from their nascent transcripts. When mtRNase P function is missing, mature mitochondrial tRNA levels are decreased, resulting in mitochondrial dysfunction. mtRNase P is composed of Mitochondrial RNase P Protein (MRPP) 1, 2, and 3. MRPP1 and 2 have their own enzymatic activity separate from MRPP3, which is the endonuclease responsible for cleaving tRNA. Human mutations in all subunits cause mitochondrial disease. The loss of mitochondrial function can cause devastating, often multisystemic failures. When mitochondria do not provide enough energy and metabolites, the result can be skeletal muscle weakness, cardiomyopathy, and heart arrhythmias. These symptoms are complex and often difficult to interpret, making disease models useful for diagnosing disease onset and progression. Previously, we identified Drosophila orthologs of each mtRNase P subunit (Roswell/MRPP1, Scully/MRPP2, Mulder/MRPP3) and found that the loss of each subunit causes lethality and decreased mitochondrial tRNA processing in vivo. Here, we use Drosophila to model mtRNase P mitochondrial diseases by reducing the level of each subunit in skeletal and heart muscle using tissue-specific RNAi knockdown. We find that mtRNase P reduction in skeletal muscle decreases adult eclosion and causes reduced muscle mass and function. Adult flies exhibit significant age-progressive locomotor defects. Cardiac-specific mtRNase P knockdowns reduce fly lifespan for Roswell and Scully, but not Mulder. Using intravital imaging, we find that adult hearts have impaired contractility and exhibit substantial arrhythmia. This occurs for roswell and mulder knockdowns, but with little effect for scully. The phenotypes shown here are similar to those exhibited by patients with mitochondrial disease, including disease caused by mutations in MRPP1 and 2. These findings also suggest that skeletal and cardiac deficiencies induced by mtRNase P loss are differentially affected by the three subunits. These differences could have implications for disease progression in skeletal and heart muscle and shed light on how the enzyme complex functions in different tissues.

3.
Int J Mol Sci ; 22(11)2021 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-34199774

RESUMEN

Over a thousand nucleus-encoded mitochondrial proteins are imported from the cytoplasm; however, mitochondrial (mt) DNA encodes for a small number of critical proteins and the entire suite of mt:tRNAs responsible for translating these proteins. Mitochondrial RNase P (mtRNase P) is a three-protein complex responsible for cleaving and processing the 5'-end of mt:tRNAs. Mutations in any of the three proteins can cause mitochondrial disease, as well as mutations in mitochondrial DNA. Great strides have been made in understanding the enzymology of mtRNase P; however, how the loss of each protein causes mitochondrial dysfunction and abnormal mt:tRNA processing in vivo has not been examined in detail. Here, we used Drosophila genetics to selectively remove each member of the complex in order to assess their specific contributions to mt:tRNA cleavage. Using this powerful model, we find differential effects on cleavage depending on which complex member is lost and which mt:tRNA is being processed. These data revealed in vivo subtleties of mtRNase P function that could improve understanding of human diseases.


Asunto(s)
Mitocondrias/enzimología , Procesamiento Postranscripcional del ARN/genética , ARN de Transferencia/genética , Ribonucleasa P/metabolismo , Alelos , Animales , Drosophila melanogaster/genética , Mitocondrias/patología , Mutación/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Transferencia/metabolismo
4.
J Vis Exp ; (170)2021 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-33900289

RESUMEN

Live imaging of Drosophila melanogaster ovaries has been instrumental in understanding a variety of basic cellular processes during development, including ribonucleoprotein particle movement, mRNA localization, organelle movement, and cytoskeletal dynamics. There are several methods for live imaging that have been developed. Due to the fact that each method involves dissecting individual ovarioles placed in media or halocarbon oil, cellular damage due to hypoxia and/or physical manipulation will inevitably occur over time. One downstream effect of hypoxia is to increase oxidative damage in the cells. The purpose of this protocol is to use live imaging to visualize the effects of oxidative damage on the localization and dynamics of subcellular structures in Drosophila ovaries after induction of controlled cellular damage. Here, we use hydrogen peroxide to induce cellular oxidative damage and give examples of the effects of such damage on two subcellular structures, mitochondria and Clu bliss particles. However, this method is applicable to any subcellular structure. The limitations are that hydrogen peroxide can only be added to aqueous media and would not work for imaging that uses halocarbon oil. The advantages are that hydrogen peroxide is readily available and inexpensive, acts quickly, its concentrations can be modulated, and oxidative damage is a good approximation of damage caused by hypoxia as well as general tissue damage due to manipulation.


Asunto(s)
Drosophila melanogaster , Ovario/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Animales , Femenino , Peróxido de Hidrógeno/farmacología , Microscopía , Mitocondrias/efectos de los fármacos , Ovario/citología , Oxidantes/farmacología
5.
Reprod Fertil ; 2(4): R113-R129, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-35118415

RESUMEN

There is a worldwide trend for women to have their first pregnancy later in life. However, as oocyte quality declines with maternal aging, this trend leads to an increase in subfertility. The cellular mechanisms underlying this decline in oocyte competence are poorly understood. Oocyte mitochondria are the subcellular organelles that supply the energy that drives early embryogenesis, and thus their quality is critical for successful conception. Mitochondria contain their own DNA (mtDNA) and mutations in mtDNA cause mitochondrial diseases with severe symptoms, such as neurodegeneration and heart disease. Since mitochondrial function declines in tissues as humans age accompanied by an accumulation of mtDNA mutations, mtDNA is implicated as a cause of declining oocyte quality in older mothers. While this mutation load could be caused by declining accuracy of the mitochondrial replisome, age-related decline in mitochondrial quality control likely contributes, however knowledge is lacking. Mitophagy, a cellular process which specifically targets and recycles damaged mitochondria may be involved, but studies are scarce. And although assisted reproductive technologies can help older mothers, how these techniques affect the mechanisms that regulate mitochondrial and oocyte quality have not been studied. With the long-term goal of understanding the molecular mechanisms that control mitochondrial quality in the oocyte, model systems including Drosophila and mouse as well as human oocytes have been used. In this review, we explore the contribution of mitophagy to oocyte quality and the need for further systematic investigation in oocytes during maternal aging using different systems. LAY SUMMARY: Mitochondria are small parts of cells called organelles that generate the chemical energy needed for life. Hundreds of thousands of mitochondria in the developing eggs of the mother support the initial growth and development of the fertilized egg. However, due to increasingly diminished function over time, mitochondria generate less energy as we age, posing real problems for older women considering pregnancy. It is possible that this declining energy could be responsible for declining fertility as women age. Energy may decline because mitochondria fail and the cell's way of keeping them healthy become less efficient as we age. This review summarizes what is known about mitochondrial quality control in developing eggs as they age. In the future, understanding how the best mitochondria are selected and maintained in the egg, and hence the future baby, may enable older women with or without mitochondrial problems, to have healthy children.


Asunto(s)
Enfermedades Mitocondriales , Mitofagia , Anciano , Animales , Niño , ADN Mitocondrial , Drosophila , Femenino , Humanos , Ratones , Oocitos , Embarazo
6.
Nucleic Acids Res ; 44(13): 6409-22, 2016 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-27131785

RESUMEN

Proteins encoded by mitochondrial DNA are translated using mitochondrially encoded tRNAs and rRNAs. As with nuclear encoded tRNAs, mitochondrial tRNAs must be processed to become fully functional. The mitochondrial form of ribonuclease P (mt:RNase P) is responsible for 5'-end maturation and is comprised of three proteins; mitochondrial RNase P protein (MRPP) 1 and 2 together with proteinaceous RNase P (PRORP). However, its mechanism and impact on development is not yet known. Using homology searches, we have identified the three proteins composing Drosophila mt:RNase P: Mulder (PRORP), Scully (MRPP2) and Roswell (MRPP1). Here, we show that each protein is essential and localizes with mitochondria. Furthermore, reducing levels of each causes mitochondrial deficits, which appear to be due at least in part to defective mitochondrial tRNA processing. Overexpressing two members of the complex, Mulder and Roswell, is also lethal, and in the case of Mulder, causes abnormal mitochondrial morphology. These data are the first evidence that defective mt:RNase P causes mitochondrial dysfunction, lethality and aberrant mitochondrial tRNA processing in vivo, underscoring its physiological importance. This in vivo mt:RNase P model will advance our understanding of how loss of mitochondrial tRNA processing causes tissue failure, an important aspect of human mitochondrial disease.


Asunto(s)
3-Hidroxiacil-CoA Deshidrogenasas/genética , ADN Mitocondrial/genética , Proteínas de Drosophila/genética , Proteínas Mitocondriales/genética , Ribonucleasa P/genética , Animales , Drosophila/genética , Regulación de la Expresión Génica , Humanos , Mitocondrias/genética , Mitocondrias/patología , ARN de Transferencia/genética , Mutaciones Letales Sintéticas/genética
7.
Biol Open ; 5(2): 195-203, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26834020

RESUMEN

Mitochondrial function is tied to the nucleus, in that hundreds of proteins encoded by nuclear genes must be imported into mitochondria. While post-translational import is fairly well understood, emerging evidence supports that mitochondrial site-specific import, or co-translational import, also occurs. However, the mechanism and the extent to which it is used are not fully understood. We have previously shown Clueless (Clu), a conserved multi-domain protein, associates with mitochondrial outer membrane proteins, including Translocase of outer membrane 20, and genetically and physically interacts with the PINK1-Parkin pathway. The human ortholog of Clu, Cluh, was shown to bind nuclear-encoded mitochondrially destined mRNAs. Here we identify the conserved tetratricopeptide domain of Clu as predominantly responsible for binding mRNA. In addition, we show Clu interacts with the ribosome at the mitochondrial outer membrane. Taken together, these data support a model whereby Clu binds to and mitochondrially targets mRNAs to facilitate mRNA localization to the outer mitochondrial membrane, potentially for site-specific or co-translational import. This role may link the presence of efficient mitochondrial protein import to mitochondrial quality control through the PINK1-Parkin pathway.

8.
Front Pharmacol ; 6: 168, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26321954

RESUMEN

Histone deacetylase inhibitors (HDIs) are under investigation for the treatment of a number of human health problems. HDIs have proven therapeutic value in refractory cases of cutaneous T-cell lymphoma. Electrocardiographic ST segment morphological changes associated with HDIs were observed during development. Because ST segment morphology is typically linked to changes in ATP sensitive potassium (KATP) channel activity, we tested the hypothesis that HDIs affect cardiac KATP channel subunit expression. Two different HDIs, romidepsin and trichostatin A, caused ~20-fold increase in SUR2 (Abcc9) subunit mRNA expression in HL-1 cardiomyocytes. The effect was specific for the SUR2 subunit as neither compound causes a marked change in SUR1 (Abcc8) expression. Moreover, the effect was cell specific as neither HDI markedly altered KATP subunit expression in MIN6 pancreatic ß-cells. We observe significant enrichment of the H3K9Ac histone mark specifically at the SUR2 promoter consistent with the conclusion that chromatin remodeling at this locus plays a role in increasing SUR2 gene expression. Unexpectedly, however, we also discovered that HDI-dependent depletion of cellular cholesterol is required for the observed effects on SUR2 expression. Taken together, the data in the present study demonstrate that KATP subunit expression can be epigenetically regulated in cardiomyocytes, defines a role for cholesterol homeostasis in mediating epigenetic regulation and suggests a potential molecular basis for the cardiac effects of the HDIs.

9.
Dis Model Mech ; 8(6): 577-89, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26035866

RESUMEN

Loss of mitochondrial function often leads to neurodegeneration and is thought to be one of the underlying causes of neurodegenerative diseases such as Parkinson's disease (PD). However, the precise events linking mitochondrial dysfunction to neuronal death remain elusive. PTEN-induced putative kinase 1 (PINK1) and Parkin (Park), either of which, when mutated, are responsible for early-onset PD, mark individual mitochondria for destruction at the mitochondrial outer membrane. The specific molecular pathways that regulate signaling between the nucleus and mitochondria to sense mitochondrial dysfunction under normal physiological conditions are not well understood. Here, we show that Drosophila Clueless (Clu), a highly conserved protein required for normal mitochondrial function, can associate with Translocase of the outer membrane (TOM) 20, Porin and PINK1, and is thus located at the mitochondrial outer membrane. Previously, we found that clu genetically interacts with park in Drosophila female germ cells. Here, we show that clu also genetically interacts with PINK1, and our epistasis analysis places clu downstream of PINK1 and upstream of park. In addition, Clu forms a complex with PINK1 and Park, further supporting that Clu links mitochondrial function with the PINK1-Park pathway. Lack of Clu causes PINK1 and Park to interact with each other, and clu mutants have decreased mitochondrial protein levels, suggesting that Clu can act as a negative regulator of the PINK1-Park pathway. Taken together, these results suggest that Clu directly modulates mitochondrial function, and that Clu's function contributes to the PINK1-Park pathway of mitochondrial quality control.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Mitocondrias/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Femenino , Humanos , Proteínas Mitocondriales/metabolismo , Mutación/genética , Fenotipo , Unión Proteica
10.
BMC Physiol ; 14: 12, 2014 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-25488103

RESUMEN

BACKGROUND: There is a close relationship between cardiovascular disease and cardiac energy metabolism, and we have previously demonstrated that palmitate inhibits myocyte contraction by increasing Kv channel activity and decreasing the action potential duration. Glucose and long chain fatty acids are the major fuel sources supporting cardiac function; however, cardiac myocytes can utilize a variety of substrates for energy generation, and previous studies demonstrate the acetate is rapidly taken up and oxidized by the heart. In this study, we tested the effects of acetate on contractile function of isolated mouse ventricular myocytes. RESULTS: Acute exposure of myocytes to 10 mM sodium acetate caused a marked, but transient, decrease in systolic sarcomere shortening (1.49 ± 0.20% vs. 5.58 ± 0.49% in control), accompanied by a significant increase in diastolic sarcomere length (1.81 ± 0.01 µm vs. 1.77 ± 0.01 µm in control), with a near linear dose response in the 1-10 mM range. Unlike palmitate, acetate caused no change in action potential duration; however, acetate markedly increased mitochondrial Ca(2+) uptake. Moreover, pretreatment of cells with the mitochondrial Ca(2+) uptake blocker, Ru-360 (10 µM), markedly suppressed the effect of acetate on contraction. CONCLUSIONS: Lehninger and others have previously demonstrated that the anions of weak aliphatic acids such as acetate stimulate Ca(2+) uptake in isolated mitochondria. Here we show that this effect of acetate appears to extend to isolated cardiac myocytes where it transiently modulates cell contraction.


Asunto(s)
Calcio/metabolismo , Mitocondrias/metabolismo , Contracción Miocárdica , Acetato de Sodio/metabolismo , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Contracción Miocárdica/efectos de los fármacos , Acetato de Sodio/farmacología
11.
Exp Parasitol ; 135(1): 87-95, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23792131

RESUMEN

Antigens obtained from the intestinal tract of filarial nematodes have been proposed as potential safe and effective vaccine candidates. Because they may be 'hidden' from the immune response during natural infection, yet accessible by antibodies induced by vaccination, intestinal antigens may have a low potential for eliciting allergic responses when vaccinating previously infected individuals. Despite prior promising data, vaccination with intestinal antigens has yet to be tested in a permissive model of filariasis. In this study we investigated the efficacy of vaccination with filarial intestinal antigens in the permissive Litomosoides sigmodontis BALB/c model of filariasis, and we evaluated the extent to which these antigens are recognized by the immune system during and after infection. Infected BALB/c mice developed lower IgG antibody responses to soluble intestinal antigens (GutAg) than to soluble antigens of whole worms (LsAg). Similarly, GutAg induced less proliferation and less production of IL-4 and IFNγ from splenocytes of infected mice than LsAg. In contrast to these differences, active infection resulted in equivalent levels of circulating GutAg-specific IgE and LsAg-specific IgE levels. Consistent with this, basophil activation, as assessed by flow cytometric staining of intracellular basophil IL-4 expression, was equivalent in response to GutAg and LsAg. Vaccination with GutAg adsorbed to CpG/alum induced GutAg specific IgG1 and IgG2A production, with GutAg specific IgG titers greater than 5-fold higher than those measured in previously infected animals. Despite this response to GutAg vaccination, vaccinated mice harbored similar parasite burdens 8 weeks post infection when compared to non-vaccinated controls. These studies demonstrate that soluble antigens obtained from the intestinal tracts of L. sigmodontis have some qualities of 'hidden' antigens, but they still sensitize mice to allergic reactions and fail to protect against future infection when given as a vaccine adsorbed to alum/CPG.


Asunto(s)
Antígenos Helmínticos/administración & dosificación , Filariasis/prevención & control , Filarioidea/inmunología , Vacunación/normas , Animales , Anticuerpos Antihelmínticos/sangre , Antígenos Helmínticos/inmunología , Basófilos/inmunología , Citocinas/análisis , Modelos Animales de Enfermedad , Femenino , Filariasis/inmunología , Gerbillinae , Inmunoglobulina E/sangre , Inmunoglobulina G/sangre , Intestinos/inmunología , Larva/inmunología , Ratones , Ratones Endogámicos BALB C , Bazo/citología , Bazo/inmunología
12.
PLoS One ; 8(1): e54283, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23342118

RESUMEN

Mitochondria are critical for neuronal function due to the high demand of ATP in these cell types. During Drosophila development, neuroblasts in the larval brain divide asymmetrically to populate the adult central nervous system. While many of the proteins responsible for maintaining neuroblast cell fate and asymmetric cell divisions are known, little is know about the role of metabolism and mitochondria in neuroblast division and maintenance. The gene clueless (clu) has been previously shown to be important for mitochondrial function. clu mutant adults have severely shortened lifespans and are highly uncoordinated. Part of their lack of coordination is due to defects in muscle, however, in this study we have identified high levels of Clu expression in larval neuroblasts and other regions of the dividing larval brain. We show while mitochondria in clu mutant neuroblasts are mislocalized during the cell cycle, surprisingly, overall brain morphology appears to be normal. This is explained by our observation that clu mutant larvae have normal levels of ATP and do not suffer oxidative damage, in sharp contrast to clu mutant adults. Mutations in two other genes encoding mitochondrial proteins, technical knockout and stress sensitive B, do not cause neuroblast mitochondrial mislocalization, even though technical knockout mutant larvae suffer oxidative damage. These results suggest Clu functions upstream of electron transport and oxidative phosphorylation, has a role in suppressing oxidative damage in the cell, and that lack of Clu's specific function causes mitochondria to mislocalize. These results also support the previous observation that larval development relies on aerobic glycolysis, rather than oxidative phosphorylation. Thus Clu's role in mitochondrial function is not critical during larval development, but is important for pupae and adults.


Asunto(s)
Proteínas de Drosophila/metabolismo , Mitocondrias/metabolismo , Proteínas Nucleares/metabolismo , Animales , Animales Modificados Genéticamente , Drosophila , Proteínas de Drosophila/genética , Larva , Proteínas Nucleares/genética , Fosforilación Oxidativa
13.
Dis Model Mech ; 2(9-10): 490-9, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19638420

RESUMEN

Parkinson's disease has been linked to altered mitochondrial function. Mutations in parkin (park), the Drosophila ortholog of a human gene that is responsible for many familial cases of Parkinson's disease, shorten life span, abolish fertility and disrupt mitochondrial structure. However, the role played by Park in mitochondrial function remains unclear. Here, we describe a novel Drosophila gene, clueless (clu), which encodes a highly conserved tetratricopeptide repeat protein that is related closely to the CluA protein of Dictyostelium, Clu1 of Saccharomyces cerevisiae and to similar proteins in diverse metazoan eukaryotes from Arabidopsis to humans. Like its orthologs, loss of Drosophila clu causes mitochondria to cluster within cells. We find that strong clu mutations resemble park mutations in their effects on mitochondrial function and that the two genes interact genetically. Conversely, mitochondria in park homozygotes become highly clustered. We propose that Clu functions in a novel pathway that positions mitochondria within the cell based on their physiological state. Disruption of the Clu pathway may enhance oxidative damage, alter gene expression, cause mitochondria to cluster at microtubule plus ends, and lead eventually to mitochondrial failure.


Asunto(s)
Secuencia Conservada , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Genes de Insecto , Mitocondrias/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Alelos , Animales , Proteínas de Drosophila/química , Drosophila melanogaster/ultraestructura , Femenino , Regulación de la Expresión Génica , Microtúbulos/metabolismo , Mitocondrias/patología , Mitocondrias/ultraestructura , Músculos/patología , Músculos/ultraestructura , Mutación/genética , Proteínas Nucleares/química , Folículo Ovárico/metabolismo , Transporte de Proteínas , Homología de Secuencia de Aminoácido , Fracciones Subcelulares/metabolismo , Ubiquitina-Proteína Ligasas
14.
Development ; 133(17): 3371-7, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16887820

RESUMEN

Mitochondria in many species enter the young oocyte en mass from interconnected germ cells to generate the large aggregate known as the Balbiani body. Organelles and germ plasm components frequently associate with this structure. Balbiani body mitochondria are thought to populate the germ line, ensuring that their genomes will be inherited preferentially. We find that milton, a gene whose product was previously shown to associate with Kinesin and to mediate axonal transport of mitochondria, is needed to form a normal Balbiani body. In addition, germ cells mutant for some milton or Kinesin heavy chain (Khc) alleles transport mitochondria to the oocyte prematurely and excessively, without disturbing Balbiani body-associated components. Our observations show that the oocyte acquires the majority of its mitochondria by competitive bidirectional transport along microtubules mediated by the Milton adaptor. These experiments provide a molecular explanation for Balbiani body formation and, surprisingly, show that viable fertile offspring can be obtained from eggs in which the normal program of mitochondrial acquisition has been severely perturbed.


Asunto(s)
Proteínas de Drosophila/fisiología , Drosophila melanogaster/fisiología , Mitocondrias/fisiología , Proteínas del Tejido Nervioso/fisiología , Oocitos/fisiología , Oogénesis/fisiología , Animales , Western Blotting , Tipificación del Cuerpo , División Celular/fisiología , Clonación de Organismos , Dineínas/fisiología , Cinesinas/fisiología , Microscopía Fluorescente , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
15.
Development ; 130(8): 1579-90, 2003 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12620983

RESUMEN

Maternally inherited mitochondria and other cytoplasmic organelles play essential roles supporting the development of early embryos and their germ cells. Using methods that resolve individual organelles, we studied the origin of oocyte and germ plasm-associated mitochondria during Drosophila oogenesis. Mitochondria partition equally on the spindle during germline stem cell and cystocyte divisions. Subsequently, a fraction of cyst mitochondria and Golgi vesicles associates with the fusome, moves through the ring canals, and enters the oocyte in a large mass that resembles the Balbiani bodies of Xenopus, humans and diverse other species. Some mRNAs, including oskar RNA, specifically associate with the oocyte fusome and a region of the Balbiani body prior to becoming localized. Balbiani body development requires an intact fusome and microtubule cytoskeleton as it is blocked by mutations in hu-li tai shao, while egalitarian mutant follicles accumulate a large mitochondrial aggregate in all 16 cyst cells. Initially, the Balbiani body supplies virtually all the mitochondria of the oocyte, including those used to form germ plasm, because the oocyte ring canals specifically block inward mitochondrial transport until the time of nurse cell dumping. Our findings reveal new similarities between oogenesis in Drosophila and vertebrates, and support our hypothesis that developing oocytes contain specific mechanisms to ensure that germ plasm is endowed with highly functional organelles.


Asunto(s)
Drosophila melanogaster/fisiología , Mitocondrias/genética , Oocitos/fisiología , Oogénesis/fisiología , Animales , Tipificación del Cuerpo , División Celular/fisiología , Femenino , Aparato de Golgi/metabolismo , Humanos , Microscopía Electrónica , Oocitos/citología , Ovario/anatomía & histología , ARN/metabolismo , Transgenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...