Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
medRxiv ; 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38746275

RESUMEN

Background: Inflammation contributes to morbidity following subarachnoid hemorrhage (SAH). Transauricular vagus nerve stimulation (taVNS) offers a noninvasive approach to target the inflammatory response following SAH. Methods: In this prospective, triple-blinded, randomized, controlled trial, twenty-seven patients were randomized to taVNS or sham stimulation. Blood and cerebrospinal fluid (CSF) were collected to quantify inflammatory markers. Cerebral vasospasm severity and functional outcomes (modified Rankin Scale, mRS) were analyzed. Results: No adverse events occurred. Radiographic vasospasm was significantly reduced (p = 0.018), with serial vessel caliber measurements demonstrating a more rapid return to normal than sham (p < 0.001). In the taVNS group, TNF-α was significantly reduced in both plasma (days 7 and 10) and CSF (day 13); IL-6 was also significantly reduced in plasma (day 4) and CSF (day 13) (p < 0.05). Patients receiving taVNS had higher rates of favorable outcomes at discharge (38.4% vs 21.4%) and first follow-up (76.9% vs 57.1%), with significant improvement from admission to first follow-up (p = 0.014), unlike the sham group (p = 0.18). The taVNS group had a significantly lower rate of discharge to skilled nursing facility or hospice (p = 0.04). Conclusion: taVNS is a non-invasive method of neuro- and systemic immunomodulation. This trial supports that taVNS following SAH can mitigate the inflammatory response, reduce radiographic vasospasm, and potentially improve functional and neurological outcomes. Clinical Trial Registration: https://clinicaltrials.gov/ct2/show/NCT04557618.

2.
medRxiv ; 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38562875

RESUMEN

Background: Inflammation has been implicated in driving the morbidity associated with subarachnoid hemorrhage (SAH). Despite understanding the important role of inflammation in morbidity following SAH, there is no current effective way to modulate this deleterious response. There is a critical need for a novel approach to immunomodulation that can be safely, rapidly, and effectively deployed in SAH patients. Vagus nerve stimulation (VNS) provides a non-pharmacologic approach to immunomodulation, with prior studies demonstrating VNS can reduce systemic inflammatory markers, and VNS has had early success treating inflammatory conditions such as arthritis, sepsis, and inflammatory bowel diseases. The aim of the Non-invasive Auricular Vagus nerve stimulation for Subarachnoid Hemorrhage (NAVSaH) trial is to translate the use of non-invasive transcutaneous auricular VNS (taVNS) to spontaneous SAH, with our central hypothesis being that implementing taVNS in the acute period following spontaneous SAH attenuates the expected inflammatory response to hemorrhage and curtails morbidity associated with inflammatory-mediated clinical endpoints. Materials and methods: The overall objectives for the NAHSaH trial are to 1) Define the impact that taVNS has on SAH-induced inflammatory markers in the plasma and cerebrospinal fluid (CSF), 2) Determine whether taVNS following SAH reduces radiographic vasospasm, and 3) Determine whether taVNS following SAH reduces chronic hydrocephalus. Following presentation to a single enrollment site, enrolled SAH patients are randomly assigned twice daily treatment with either taVNS or sham stimulation for the duration of their intensive care unit stay. Blood and CSF are drawn before initiation of treatment sessions, and then every three days during a patient's hospital stay. Primary endpoints include change in the inflammatory cytokine TNF-α in plasma and cerebrospinal fluid between day 1 and day 13, rate of radiographic vasospasm, and rate of requirement for long-term CSF diversion via a ventricular shunt. Secondary outcomes include exploratory analyses of a panel of additional cytokines, number and type of hospitalized acquired infections, duration of external ventricular drain in days, interventions required for vasospasm, continuous physiology data before, during, and after treatment sessions, hospital length of stay, intensive care unit length of stay, and modified Rankin Scale score (mRS) at admission, discharge, and each at follow-up appointment for up to two years following SAH. Discussion: Inflammation plays a central role in morbidity following SAH. This NAVSaH trial is innovative because it diverges from the pharmacologic status quo by harnessing a novel non-invasive neuromodulatory approach and its known anti-inflammatory effects to alter the pathophysiology of SAH. The investigation of a new, effective, and rapidly deployable intervention in SAH offers a new route to improve outcomes following SAH. Trial registration: Clinical Trials Registered, NCT04557618. Registered on September 21, 2020, and the first patient was enrolled on January 4, 2021.

3.
J Cereb Blood Flow Metab ; 43(8): 1382-1389, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36994857

RESUMEN

Many groups have reported lymphatic and glymphatic structures in animal and human brains, but tracer injection into the human brain to demonstrate real-time lymphatic drainage and mapping has not been described. We enrolled patients undergoing standard-of-care resection or stereotactic biopsy for suspected intracranial tumors. Patients received peritumoral injections of 99mTc-tilmanocept followed by planar or tomographic imaging. Fourteen patients with suspected brain tumors were enrolled. One was excluded from analysis because of tracer leakage during injection. There was no drainage of 99mTc-tilmanocept to regional lymph nodes in any of the patients. On average, after correcting for radioactive decay, 70.7% (95% CI: 59.9%, 81.6%) of the tracer in the injection site and 78.1% (95% CI: 71.1%, 85.1%) in the whole-head on the day of surgery remained the morning after, with variable radioactivity in the subarachnoid space. The retained fraction was much greater than expected based on the clearance rate from non-brain injection sites. In this pilot study, the lymphatic tracer 99mTc-tilmanocept was injected into the brain parenchyma, and there was no drainage outside the brain to the cervical lymph nodes. Our work demonstrates an inefficiency of drainage from peritumoral brain parenchyma and highlights a therapeutic opportunity to improve immunosurveillance of the brain.


Asunto(s)
Linfocintigrafia , Biopsia del Ganglio Linfático Centinela , Humanos , Linfocintigrafia/métodos , Proyectos Piloto , Biopsia del Ganglio Linfático Centinela/métodos , Radiofármacos , Metástasis Linfática
4.
J Neurosurg Case Lessons ; 5(7)2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36794734

RESUMEN

BACKGROUND: Intracranial fusiform aneurysms are circumferential dilations of cerebral arteries that can lead to complications including ischemic stroke due to vessel occlusion, subarachnoid hemorrhage, or intracerebral hemorrhage. Treatment options for fusiform aneurysms have expanded significantly in recent years. Microsurgical treatment options include proximal and distal surgical occlusion and microsurgical trapping of the aneurysm, usually in association with high-flow bypass procedures. Endovascular treatment options include the placement of coils and/or flow diverters. OBSERVATIONS: Here the authors report a case of aggressive surveillance and treatment of a man with multiple progressive, recurrent, and de novo fusiform aneurysms of the left anterior cerebral circulation over 16 years. Because the long-term course of his treatment coincided with the recent expansion of endovascular treatment options, he underwent every type of treatment listed above. LESSONS: This case demonstrates the wide range of therapeutic options for fusiform aneurysms and how the treatment model for these lesions has evolved.

5.
J Immunother Cancer ; 11(2)2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36808076

RESUMEN

BACKGROUND: Adoptive cellular therapies with chimeric antigen receptor T cells have revolutionized the treatment of some malignancies but have shown limited efficacy in solid tumors such as glioblastoma and face a scarcity of safe therapeutic targets. As an alternative, T cell receptor (TCR)-engineered cellular therapy against tumor-specific neoantigens has generated significant excitement, but there exist no preclinical systems to rigorously model this approach in glioblastoma. METHODS: We employed single-cell PCR to isolate a TCR specific for the Imp3D81N neoantigen (mImp3) previously identified within the murine glioblastoma model GL261. This TCR was used to generate the Mutant Imp3-Specific TCR TransgenIC (MISTIC) mouse in which all CD8 T cells are specific for mImp3. The therapeutic efficacy of neoantigen-specific T cells was assessed through a model of cellular therapy consisting of the transfer of activated MISTIC T cells and interleukin 2 into lymphodepleted tumor-bearing mice. We employed flow cytometry, single-cell RNA sequencing, and whole-exome and RNA sequencing to examine the factors underlying treatment response. RESULTS: We isolated and characterized the 3×1.1C TCR that displayed a high affinity for mImp3 but no wild-type cross-reactivity. To provide a source of mImp3-specific T cells, we generated the MISTIC mouse. In a model of adoptive cellular therapy, the infusion of activated MISTIC T cells resulted in rapid intratumoral infiltration and profound antitumor effects with long-term cures in a majority of GL261-bearing mice. The subset of mice that did not respond to the adoptive cell therapy showed evidence of retained neoantigen expression but intratumoral MISTIC T cell dysfunction. The efficacy of MISTIC T cell therapy was lost in mice bearing a tumor with heterogeneous mImp3 expression, showcasing the barriers to targeted therapy in polyclonal human tumors. CONCLUSIONS: We generated and characterized the first TCR transgenic against an endogenous neoantigen within a preclinical glioma model and demonstrated the therapeutic potential of adoptively transferred neoantigen-specific T cells. The MISTIC mouse provides a powerful novel platform for basic and translational studies of antitumor T-cell responses in glioblastoma.


Asunto(s)
Glioblastoma , Inmunoterapia Adoptiva , Ratones , Humanos , Animales , Antígenos de Neoplasias , Linfocitos T CD8-positivos , Receptores de Antígenos de Linfocitos T
6.
Neurosurg Focus ; 53(5): E8, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36321291

RESUMEN

OBJECTIVE: For patients with surgically accessible solitary metastases or oligometastatic disease, treatment often involves resection followed by postoperative stereotactic radiosurgery (SRS). This strategy has several potential drawbacks, including irregular target delineation for SRS and potential tumor "seeding" away from the resection cavity during surgery. A neoadjuvant (preoperative) approach to radiation therapy avoids these limitations and offers improved patient convenience. This study assessed the efficacy of neoadjuvant SRS as a new treatment paradigm for patients with brain metastases. METHODS: A retrospective review was performed at a single institution to identify patients who had undergone neoadjuvant SRS (specifically, Gamma Knife radiosurgery) followed by resection of a brain metastasis. Kaplan-Meier survival and log-rank analyses were used to evaluate risks of progression and death. Assessments were made of local recurrence and leptomeningeal spread. Additionally, an analysis of the contemporary literature of postoperative and neoadjuvant SRS for metastatic disease was performed. RESULTS: Twenty-four patients who had undergone neoadjuvant SRS followed by resection of a brain metastasis were identified in the single-institution cohort. The median age was 64 years (range 32-84 years), and the median follow-up time was 16.5 months (range 1 month to 5.7 years). The median radiation dose was 17 Gy prescribed to the 50% isodose. Rates of local disease control were 100% at 6 months, 87.6% at 12 months, and 73.5% at 24 months. In 4 patients who had local treatment failure, salvage therapy included repeat resection, laser interstitial thermal therapy, or repeat SRS. One hundred thirty patients (including the current cohort) were identified in the literature who had been treated with neoadjuvant SRS prior to resection. Overall rates of local control at 1 year after neoadjuvant SRS treatment ranged from 49% to 91%, and rates of leptomeningeal dissemination from 0% to 16%. In comparison, rates of local control 1 year after postoperative SRS ranged from 27% to 91%, with 7% to 28% developing leptomeningeal disease. CONCLUSIONS: Neoadjuvant SRS for the treatment of brain metastases is a novel approach that mitigates the shortcomings of postoperative SRS. While additional prospective studies are needed, the current study of 130 patients including the summary of 106 previously published cases supports the safety and potential efficacy of preoperative SRS with potential for improved outcomes compared with postoperative SRS.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Meníngeas , Radiocirugia , Humanos , Adulto , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Radiocirugia/efectos adversos , Terapia Neoadyuvante/efectos adversos , Neoplasias Encefálicas/cirugía , Neoplasias Meníngeas/cirugía , Terapia Recuperativa , Estudios Retrospectivos , Resultado del Tratamiento
7.
Semin Cancer Biol ; 78: 63-77, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33711414

RESUMEN

Since the late 19th century, the immune system has increasingly garnered interest as a novel avenue for cancer therapy, particularly given scientific breakthroughs in recent decades delineating the fundamental role of the immune system in tumorigenesis. The immunoediting hypothesis has articulated this role, describing three phases of the tumor-immune system interaction: Elimination, Equilibrium, and Escape wherein tumors progress from active immunologic surveillance and destruction through dynamic immunologic stasis to unfettered growth. The primary goals of immunotherapy are to restrict and revert progression through these phases, thereby improving the immune system's ability to control tumor growth. In this review, we detail the development and foundation of the cancer immunoediting hypothesis and apply this hypothesis to the dynamic immunotherapy field that includes checkpoint blockade, vaccine therapy, and adoptive cell transfer.


Asunto(s)
Susceptibilidad a Enfermedades/inmunología , Sistema Inmunológico , Neoplasias/etiología , Animales , Humanos , Vigilancia Inmunológica , Inmunoterapia , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/terapia , Microambiente Tumoral
8.
Mo Med ; 117(1): 45-49, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32158049

RESUMEN

Glioblastoma is a devastating disease with a dismal prognosis. While recent advancements in cancer immunotherapy have led to improvements in treating other types of cancer, patients with glioblastoma have not benefited from these new therapies and techniques. Fortunately, neurosurgeons and oncologists at Washington University School of Medicine conducting a cutting edge clinical trial are looking to overcome these persistent challenges in treating glioblastoma through combining a personalized vaccine with new immunotherapy drugs.


Asunto(s)
Neoplasias Encefálicas/terapia , Vacunas contra el Cáncer/uso terapéutico , Glioblastoma/terapia , Inmunoterapia/métodos , Ensayos Clínicos como Asunto , Terapia Combinada , Humanos
9.
Virology ; 476: 377-385, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25589241

RESUMEN

Ectopic expression of Simian Virus 40 (SV40) large T antigen (LT) in mouse embryonic fibroblasts (MEFs) increased levels of mRNAs encoding interferon stimulated genes (ISGs). The mechanism by which T antigen increases levels of ISGs in MEFs remains unclear. We present evidence that expression of T antigen from SV40, Human Polyomaviruses BK (BKV) or JC (JCV) upregulate production of ISGs in MEFs, and subsequently result in an antiviral state, as determined by inhibition of VSV or EMCV growth. The first 136 amino acids of LT are sufficient for these activities. Furthermore, increased ISG expression and induction of the antiviral state requires STAT1. Finally, the RB binding motif of LT is necessary for activation of STAT1. We conclude that the induction of the STAT1 mediated innate immune response in MEFs is a common feature shared by SV40, BKV and JCV.


Asunto(s)
Antígenos Virales de Tumores/inmunología , Virus BK/inmunología , Virus JC/inmunología , Infecciones por Polyomavirus/inmunología , Virus 40 de los Simios/inmunología , Secuencias de Aminoácidos , Animales , Antígenos Virales de Tumores/química , Antígenos Virales de Tumores/genética , Virus BK/química , Virus BK/genética , Fibroblastos/inmunología , Fibroblastos/virología , Humanos , Inmunidad Innata , Virus JC/química , Virus JC/genética , Ratones , Infecciones por Polyomavirus/genética , Infecciones por Polyomavirus/virología , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/inmunología , Virus 40 de los Simios/química , Virus 40 de los Simios/genética , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...