Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 9: 1964, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30713543

RESUMEN

Tree mortality is a key driver of forest dynamics and its occurrence is projected to increase in the future due to climate change. Despite recent advances in our understanding of the physiological mechanisms leading to death, we still lack robust indicators of mortality risk that could be applied at the individual tree scale. Here, we build on a previous contribution exploring the differences in growth level between trees that died and survived a given mortality event to assess whether changes in temporal autocorrelation, variance, and synchrony in time-series of annual radial growth data can be used as early warning signals of mortality risk. Taking advantage of a unique global ring-width database of 3065 dead trees and 4389 living trees growing together at 198 sites (belonging to 36 gymnosperm and angiosperm species), we analyzed temporal changes in autocorrelation, variance, and synchrony before tree death (diachronic analysis), and also compared these metrics between trees that died and trees that survived a given mortality event (synchronic analysis). Changes in autocorrelation were a poor indicator of mortality risk. However, we found a gradual increase in inter-annual growth variability and a decrease in growth synchrony in the last ∼20 years before mortality of gymnosperms, irrespective of the cause of mortality. These changes could be associated with drought-induced alterations in carbon economy and allocation patterns. In angiosperms, we did not find any consistent changes in any metric. Such lack of any signal might be explained by the relatively high capacity of angiosperms to recover after a stress-induced growth decline. Our analysis provides a robust method for estimating early-warning signals of tree mortality based on annual growth data. In addition to the frequently reported decrease in growth rates, an increase in inter-annual growth variability and a decrease in growth synchrony may be powerful predictors of gymnosperm mortality risk, but not necessarily so for angiosperms.

2.
Glob Chang Biol ; 23(4): 1675-1690, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27759919

RESUMEN

Tree mortality is a key factor influencing forest functions and dynamics, but our understanding of the mechanisms leading to mortality and the associated changes in tree growth rates are still limited. We compiled a new pan-continental tree-ring width database from sites where both dead and living trees were sampled (2970 dead and 4224 living trees from 190 sites, including 36 species), and compared early and recent growth rates between trees that died and those that survived a given mortality event. We observed a decrease in radial growth before death in ca. 84% of the mortality events. The extent and duration of these reductions were highly variable (1-100 years in 96% of events) due to the complex interactions among study species and the source(s) of mortality. Strong and long-lasting declines were found for gymnosperms, shade- and drought-tolerant species, and trees that died from competition. Angiosperms and trees that died due to biotic attacks (especially bark-beetles) typically showed relatively small and short-term growth reductions. Our analysis did not highlight any universal trade-off between early growth and tree longevity within a species, although this result may also reflect high variability in sampling design among sites. The intersite and interspecific variability in growth patterns before mortality provides valuable information on the nature of the mortality process, which is consistent with our understanding of the physiological mechanisms leading to mortality. Abrupt changes in growth immediately before death can be associated with generalized hydraulic failure and/or bark-beetle attack, while long-term decrease in growth may be associated with a gradual decline in hydraulic performance coupled with depletion in carbon reserves. Our results imply that growth-based mortality algorithms may be a powerful tool for predicting gymnosperm mortality induced by chronic stress, but not necessarily so for angiosperms and in case of intense drought or bark-beetle outbreaks.


Asunto(s)
Escarabajos , Sequías , Árboles/crecimiento & desarrollo , Animales , Carbono , Estrés Fisiológico
3.
Tree Physiol ; 20(4): 229-237, 2000 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12651459

RESUMEN

We investigated effects of nutrient addition on several physiological characteristics of 60-cm-tall black spruce (Picea mariana Mill. B.S.P.) layers (i.e., rooted branches of overstory trees) and 20-cm-tall planted seedlings on a clear-cut, N-limited boreal site. After two growing seasons, current-year and one-year-old needles of fertilized trees (layers and seedlings combined) had higher net photosynthetic rates (A(n)) and maximum capacity of Rubisco for CO(2) fixation (V(max)) than unfertilized trees. One-year-old needles of fertilized trees had higher stomatal conductance (g(s)), higher water-use efficiency, and lower intercellular to ambient CO(2) ratio than unfertilized trees. Additionally, fertilized trees had higher predawn and midday shoot water potentials than unfertilized trees. Stomatal conductance of 1-year-old needles was 23% higher in seedlings than in layers, but there were no significant differences in g(s) of current-year needles between the regeneration types. For both needle age-classes, A(n) and V(max) of layers were 25 and 40% higher, respectively, than the corresponding values for seedlings. The higher values of A(n), V(max) and foliar N concentration of layers compared with seedlings after two growing seasons may be associated with the larger root systems of the layers compared with the transplanted seedlings.

4.
Tree Physiol ; 17(8_9): 521-535, 1997.
Artículo en Inglés | MEDLINE | ID: mdl-14759825

RESUMEN

Effects of shoot water potential (Psi) and leaf-to-atmosphere vapor pressure difference (VPD) on gas exchange of jack pine (Pinus banksiana Lamb.), black spruce (Picea mariana (Mill.) B.S.P.), and aspen (Populus tremuloides Michx.) were investigated at the northern edge of the boreal forest in Manitoba, Canada. Laboratory measurements on cut branches showed that net photosynthesis (A(n)) and mesophyll conductance (g(m)) of jack pine and g(m) of black spruce did not respond to Psi until a threshold Psi was reached below which they decreased linearly. Photosynthesis of black spruce decreased slowly with decreasing Psi above the threshold and declined more rapidly thereafter. The threshold Psi was lower in black spruce than in jack pine. However, stomatal conductance (g(s)) of black spruce decreased continuously with decreasing Psi, whereas g(s) of jack pine showed a threshold response. Mesophyll limitations were primarily responsible for the decline in A(n) at low Psi for jack pine and black spruce in the middle of the growing season, but stomatal limitations became more important later in the season. Field measurements on in situ branches on warm sunny days showed that both conifer species maintained Psi above the corresponding threshold and there was no evidence of Psi limitation on A(n) of jack pine, black spruce or aspen. Vapor pressure difference was important in regulating gas exchange in all three species. An empirical model was used to quantify the g(s) response to VPD. When parameterized with laboratory data for the conifers, the model also fit the corresponding field data. When parameterized with field data, the model showed that stomata of aspen were the most sensitive of the three species to VPD, and stomata of black spruce were the least sensitive. For jack pine and aspen, stomata of foliage in the upper canopy were significantly more sensitive than stomata of foliage in the lower canopy. Vapor pressure difference had a greater impact on A(n) of aspen than on A(n) of the conifers as a result of aspen's greater stomatal sensitivity to VPD and greater slope of the relationship between A(n) and intercellular CO(2) concentration (C(i)). During the 1994 growing season, VPD averaged 1.0 kPa, corresponding to ratios of C(i) to ambient CO(2) of 0.77, 0.71 and 0.81 for jack pine, black spruce and aspen, respectively. We conclude that increases in VPD at the leaf surface in response to climate change should affect the absolute CO(2) and H(2)O fluxes per unit leaf area of the aspen component of a boreal forest landscape more than those of the conifer component.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...