Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Anticancer Agents Med Chem ; 19(6): 802-819, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30514195

RESUMEN

BACKGROUND: Traditional chemotherapeutics of low-molecular weight diffuse passively across intact membrane structures of normal healthy cells found in tissues and organ systems in a non-specific unrestricted manner which largely accounts for the induction of most sequelae which restrict dosage, administration frequency, and duration of therapeutic intervention. Molecular strategies that offer enhanced levels of potency, greater efficacy and broader margins-of-safety include the discovery of alternative candidate therapeutics and development of methodologies capable of mediating properties of selective "targeted" delivery. MATERIALS AND METHODS: The covalent immunopharmaceutical, dexamethasone-(C21-phosphoramidate)-[anti- EGFR] was synthesized utilizing organic chemistry reactions that comprised a multi-stage synthesis regimen. Multiple forms of analysis were implemented to vadliate the successful synthesis (UV spectrophotometric absorbance), purity and molar-incorporation-index (UV spectrophotometric absorbance, chemical-based protein determination), absence of fragmentation/polymerization (SDS-PAGE/chemiluminescent autoradiography), retained selective binding-avidity of IgG-immunoglobulin (cell-ELISA); and selectively "targeted" antineoplastic cytotoxicity (biochemistry-based cell vitality/viability assay). RESULTS: The botanicals carnosic acid, ginkgolide-B and tangeretin, each individually exerted maximum antineoplastic cytotoxicity levels of 58.1%, 5.3%, and 41.1% respectively against pulmonary adenocarcinoma (A549) populations. Dexamethasone-(C21-phosphoramidate)-[anti-EGFR] formulated at corticosteroid/ glucocorticoid equivalent concentrations produced anti-neoplastic cytotoxicity at levels of 7.7% (10-9 M), 26.9% (10-8 M), 64.9% (10-7 M), 69.9% (10-6 M) and 73.0% (10-5 M). Ccarnosic acid, ginkgolide-B and tangeretin in simultaneous dual-combination with dexamethasone-(C21-phosphoramidate)-[anti-EGFR] exerted maximum anti-neoplastic cytotoxicity levels of 70.5%, 58.6%, and 69.7% respectively. DISCUSSION: Carnosic acid, ginkgolide-B and tangeretin botanicals exerted anti-neoplastic cytotoxicity against pulmonary adenocarcinoma (A549) which additively contributed to the anti-neoplastic cytotoxic potency of the covalent immunopharmaceutical, dexamethasone-(C21-phosphoramidate)-[anti-EGFR]. Carnosic acid and tangeretin were most potent in this regard both individually and in dual-combination with dexamethasone-(C21- phosphoramidate)-[anti-EGFR]. Advantages and attributes of carnosic acid and tangeretin as potential monotherapeutics are a wider margin-of-safety of conventional chemotherapeutics which would readily complement the selective "targeted" delivery properties of dexamethasone-(C21-phosphoramidate)-[anti-EGFR] and possibly other covalent immunopharmaceuticals in addition to providing opportunities for the discovery of combination therapies that provide heightened levels of anti-neoplastic efficacy.


Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Antineoplásicos/farmacología , Dexametasona/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Células A549 , Abietanos/síntesis química , Abietanos/química , Abietanos/farmacología , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Dexametasona/química , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Flavonas/síntesis química , Flavonas/química , Flavonas/farmacología , Ginkgólidos/síntesis química , Ginkgólidos/química , Ginkgólidos/farmacología , Humanos , Lactonas/síntesis química , Lactonas/química , Lactonas/farmacología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Relación Estructura-Actividad , Células Tumorales Cultivadas
2.
Curr Pharm Des ; 24(11): 1224-1240, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29141539

RESUMEN

BACKGROUND: Unintentional passive diffusion of conventional small molecular weight pharmaceuticals across intact membranes of normal healthy cells in tissues and organ systems induces sequelae that limit therapeutic dosage and duration of administration. Selective "targeted" delivery of pharmaceuticals is a molecular strategy that can potentially provide heightened margins-of-safety with greater potency and improved efficacy. MATERIALS AND METHODS: Monophosphate analogs of fludarabine, gemcitabine, and dexamethasone were combined with a carbodiimide reagent in the presence of imidazole to produce reactive intermediates that were subsequently covalently bound to monoclonal anti-IGF-1R or anti-EGFR IgG-immunoglobulin. The resulting covalent immunopharmaceutical end-products, fludarabine-(5'-phosphoramidate)-[anti-IGF-1R], gemcitabine-(5'- phosphoramidate)-[anti-IGF-1R], and dexamethasone-(C21-phosphoramidate)-[anti-EGFR] were evaluated by SDS-PAGE/chemiluminescent autoradiography (fragmentation/polymerization detection), UV spectrophotometric absorbance (purity; molar-incorporation-index), cell-ELISA (retained selective binding-avidity), and cell vitality-viability (selectively "targeted" anti-neoplastic cytotoxicity). RESULTS: Maximum selectively "targeted" anti-neoplastic cytotoxicity of fludarabine-(5'-phosphoramidate)-[anti- IGF-1R], gemcitabine-(5'-phosphoramidate)-[anti-IGF-1R], and dexamethasone-(C21-phosphoramidate)-[anti- EGFR] was detected at the pharmaceutical-equivalent concentrations of 10-5 M (94.7%), 10-7 M (93.1%), and 10-7 M (64.9%) respectively. DISCUSSION: Organic chemistry reactions were optimized in a template multi-stage synthesis regimen for fludarabine-( 5'-phosphoramidate)-[anti-IGF-1R], gemcitabine-(5'-phosphoramidate)-[anti-IGF-1R], and dexamethasone-( C21-phosphoramidate)-[anti-EGFR]. Attributes of the synthesis regimen include; [-i-] covalent bonding of pharmaceutical moeities at high molar incorporation indexes, [-ii-] implementation of organic chemistry reactions in a non-dedicated synthesis regimen allowing component substitution and [-iii-] optional preservation of presynthesized amine-reactive pharmaceutical intermediates for on-demand immunopharmaceutical synthesis. Attributes of the covalent immunopharmaceuticals are; absence of any synthetically introduced chemical groups, retained IgG-immunoglobulin binding-avidity and potent selective "targeted" anti-neoplastic cytotoxic potency. Under in-vivo conditions, supplemental anti-neoplastic cytotoxicity is realized through trophic receptor inhibition and activation of multiple cytotoxic host immune responses.


Asunto(s)
Antineoplásicos/farmacología , Desoxicitidina/análogos & derivados , Dexametasona/farmacología , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Vidarabina/análogos & derivados , Células A549 , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Desoxicitidina/síntesis química , Desoxicitidina/química , Desoxicitidina/farmacología , Dexametasona/síntesis química , Dexametasona/química , Relación Dosis-Respuesta a Droga , Ensayo de Inmunoadsorción Enzimática , Humanos , Estructura Molecular , Relación Estructura-Actividad , Células Tumorales Cultivadas , Vidarabina/síntesis química , Vidarabina/química , Vidarabina/farmacología , Gemcitabina
3.
Chem Biol Drug Des ; 89(3): 379-399, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27561602

RESUMEN

One molecular-based approach that increases potency and reduces dose-limited sequela is the implementation of selective 'targeted' delivery strategies for conventional small molecular weight chemotherapeutic agents. Descriptions of the molecular design and organic chemistry reactions that are applicable for synthesis of covalent gemcitabine-monophosphate immunochemotherapeutics have to date not been reported. The covalent immunopharmaceutical, gemcitabine-(5'-phosphoramidate)-[anti-IGF-1R] was synthesized by reacting gemcitabine with a carbodiimide reagent to form a gemcitabine carbodiimide phosphate ester intermediate which was subsequently reacted with imidazole to create amine-reactive gemcitabine-(5'-phosphorylimidazolide) intermediate. Monoclonal anti-IGF-1R immunoglobulin was combined with gemcitabine-(5'-phosphorylimidazolide) resulting in the synthetic formation of gemcitabine-(5'-phosphoramidate)-[anti-IGF-1R]. The gemcitabine molar incorporation index for gemcitabine-(5'-phosphoramidate)-[anti-IGF-R1] was 2.67:1. Cytotoxicity Analysis - dramatic increases in antineoplastic cytotoxicity were observed at and between the gemcitabine-equivalent concentrations of 10-9  M and 10-7  M where lethal cancer cell death increased from 0.0% to a 93.1% maximum (100.% to 6.93% residual survival), respectively. Advantages of the organic chemistry reactions in the multistage synthesis scheme for gemcitabine-(5'-phosphoramidate)-[anti-IGF-1R] include their capacity to achieve high chemotherapeutic molar incorporation ratios; option of producing an amine-reactive chemotherapeutic intermediate that can be preserved for future synthesis applications; and non-dedicated organic chemistry reaction scheme that allows substitutions of either or both therapeutic moieties, and molecular delivery platforms.


Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Antineoplásicos/química , Antineoplásicos/farmacología , Desoxicitidina/análogos & derivados , Neoplasias Pulmonares/tratamiento farmacológico , Receptor IGF Tipo 1/inmunología , Adenocarcinoma/patología , Adenocarcinoma del Pulmón , Antineoplásicos/síntesis química , Carbodiimidas/química , Línea Celular Tumoral , Técnicas de Química Sintética , Desoxicitidina/química , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales/métodos , Ensayo de Inmunoadsorción Enzimática/métodos , Humanos , Inmunoglobulina G/metabolismo , Inmunoglobulinas/química , Neoplasias Pulmonares/patología , Polimerizacion , Receptor IGF Tipo 1/metabolismo , Gemcitabina
4.
J Virol ; 91(3)2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-27795412

RESUMEN

The envelope (Env) glycoprotein of HIV is expressed on the surface of productively infected cells and can be used as a target for cytotoxic immunoconjugates (ICs), in which cell-killing moieties, including toxins, drugs, or radionuclides, are chemically or genetically linked to monoclonal antibodies (MAbs) or other targeting ligands. Such ICs could be used to eliminate persistent reservoirs of HIV infection. We have found that MAbs which bind to the external loop of gp41, e.g., MAb 7B2, make highly effective ICs, particularly when used in combination with soluble CD4. We evaluated the toxicity, immunogenicity, and efficacy of the ICs targeted with 7B2 in mice and in simian-human immunodeficiency virus-infected macaques. In the macaques, we tested immunotoxins (ITs), consisting of protein toxins bound to the targeting agent. ITs were well tolerated and initially efficacious but were ultimately limited by their immunogenicity. In an effort to decrease immunogenicity, we tested different toxic moieties, including recombinant toxins, cytotoxic drugs, and tubulin inhibitors. ICs containing deglycosylated ricin A chain prepared from ricin toxin extracted from castor beans were the most effective in killing HIV-infected cells. Having identified immunogenicity as a major concern, we show that conjugation of IT to polyethylene glycol limits immunogenicity. These studies demonstrate that cytotoxic ICs can target virus-infected cells in vivo but also highlight potential problems to be addressed. IMPORTANCE: It is not yet possible to cure HIV infection. Even after years of fully effective antiviral therapy, a persistent reservoir of virus-infected cells remains. Here we propose that a targeted conjugate consisting of an anti-HIV antibody bound to a toxic moiety could function to kill the HIV-infected cells that constitute this reservoir. We tested this approach in HIV-infected cells grown in the lab and in animal infections. Our studies demonstrated that these immunoconjugates are effective both in vitro and in test animals. In particular, ITs constructed with the deglycosylated A chain prepared from native ricin were the most effective in killing cells, but their utility was blunted because they provoked immune reactions that interfered with the therapeutic effects. We then demonstrated that coating of the ITs with polyethylene glycol minimized the immunogenicity, as has been demonstrated with other protein therapies.


Asunto(s)
Fármacos Anti-VIH/farmacología , Diseño de Fármacos , Proteínas gp160 de Envoltorio del VIH/antagonistas & inhibidores , Inmunoconjugados/farmacología , Animales , Fármacos Anti-VIH/química , Anticuerpos Monoclonales/inmunología , Células Cultivadas , Modelos Animales de Enfermedad , Proteínas gp160 de Envoltorio del VIH/inmunología , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/virología , VIH-1/efectos de los fármacos , Humanos , Inmunoconjugados/química , Inmunotoxinas/farmacología , Macaca nemestrina , Ratones , Polietilenglicoles/química
5.
Drug Des Devel Ther ; 10: 2575-97, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27574398

RESUMEN

PURPOSE: Corticosteroids are effective in the management of a variety of disease states, such as several forms of neoplasia (leukemia and lymphoma), autoimmune conditions, and severe inflammatory responses. Molecular strategies that selectively "target" delivery of corticosteroids minimize or prevents large amounts of the pharmaceutical moiety from passively diffusing into normal healthy cell populations residing within tissues and organ systems. MATERIALS AND METHODS: The covalent immunopharmaceutical, dexamethasone-(C21-phosphoramide)-[anti-EGFR] was synthesized by reacting dexamethasone-21-monophosphate with a carbodiimide reagent to form a dexamethasone phosphate carbodiimide ester that was subsequently reacted with imidazole to create an amine-reactive dexamethasone-(C21-phosphorylimidazolide) intermediate. Monoclonal anti-EGFR immunoglobulin was combined with the amine-reactive dexamethasone-(C21-phosphorylimidazolide) intermediate, resulting in the synthesis of the covalent immunopharmaceutical, dexamethasone-(C21-phosphoramide)-[anti-EGFR]. Following spectrophotometric analysis and validation of retained epidermal growth factor receptor type 1 (EGFR)-binding avidity by cell-ELISA, the selective anti-neoplasic cytotoxic potency of dexamethasone-(C21-phosphoramide)-[anti-EGFR] was established by MTT-based vitality stain methodology using adherent monolayer populations of human pulmonary adenocarcinoma (A549) known to overexpress the tropic membrane receptors EGFR and insulin-like growth factor receptor type 1. RESULTS: The dexamethasone:IgG molar-incorporation-index for dexamethasone-(C21-phosphoramide)-[anti-EGFR] was 6.95:1 following exhaustive serial microfiltration. Cytotoxicity analysis: covalent bonding of dexamethasone to monoclonal anti-EGFR immunoglobulin did not significantly modify the ex vivo antineoplastic cytotoxicity of dexamethasone against pulmonary adenocarcinoma at and between the standardized dexamethasone equivalent concentrations of 10(-9) M and 10(-5) M. Rapid increases in antineoplastic cytotoxicity were observed at and between the dexamethasone equivalent concentrations of 10(-9) M and 10(-7) M where cancer cell death increased from 7.7% to a maximum of 64.9% (92.3%-35.1% residual survival), respectively, which closely paralleled values for "free" noncovalently bound dexamethasone. DISCUSSION: Organic chemistry reaction regimens were optimized to develop a multiphase synthesis regimen for dexamethasone-(C21-phosphoramide)-[anti-EGFR]. Attributes of dexamethasone-(C21-phosphoramide)-[anti-EGFR] include a high dexamethasone molar incorporation-index, lack of extraneous chemical group introduction, retained EGFR-binding avidity ("targeted" delivery properties), and potential to enhance long-term pharmaceutical moiety effectiveness.


Asunto(s)
Adenocarcinoma/patología , Antineoplásicos/farmacología , Dexametasona/análogos & derivados , Diseño de Fármacos , Neoplasias Pulmonares/patología , Fosforamidas/farmacología , Adenocarcinoma/tratamiento farmacológico , Antineoplásicos/síntesis química , Antineoplásicos/química , Muerte Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Dexametasona/síntesis química , Dexametasona/química , Dexametasona/farmacología , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Fosforamidas/síntesis química , Fosforamidas/química , Relación Estructura-Actividad , Células Tumorales Cultivadas
6.
Cancer Biother Radiopharm ; 27(1): 41-55, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22191802

RESUMEN

The C(3)-monoamine on the carbohydrate moiety (daunosamine -NH(2)-3') of epirubicin was reacted under anhydrous conditions with succinimidyl 4,4-azipentanoate to create a covalent UV-photoactivated epirubicin-(C(3)-amide) intermediate with primary amine-reactive properties. A synthetic covalent bond between the UV-photoactivated epirubicin-(C(3)-amide) intermediate and the ɛ-amine of lysine residues within the amino acid sequence of anti-HER2/neu monoclonal immunoglobulin was subsequently created by exposure to UV light (354 nm) for 15 minutes. Size-separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis combined with immunodetection analysis and chemiluminescent autoradiographic imaging revealed a lack of IgG-IgG polymerization or degradative protein fragmentation of the covalent epirubicin-(C(3)-amide)-[anti-HER2/neu] immunochemotherapeutic. Retained binding-avidity of epirubicin-(C(3)-amide)-[anti-HER2/neu] was validated by cell-ELISA utilizing monolayer populations of chemotherapeutic-resistant mammary adenocarcinoma SKBr-3 which highly overexpress membrane-associated HER2/neu complexes. Between epirubicin-equivalent concentrations of 10(-10) to 10(-6) M the covalent epirubicin-(C(3)-amide)-[anti-HER2/neu] immunochemotherapeutic consistently evoked levels of cytotoxic anti-neoplastic potency that were highly analogous to chemotherapeutic-equivalent concentrations of epirubicin. Cytotoxic anti-neoplastic potency of epirubicin-(C(3)-amide)-[anti-HER2/neu] against chemotherapeutic-resistant mammary adenocarcinoma SKBr-3 challenged with epirubicin-(C(3)-amide)-[anti-HER2/neu] at an epirubicin-equivalent concentration of 10(-6) M was 88.5% (e.g., 11.5% residual survival). Between final epirubicin-equivalent concentrations of 10(-8) and 10(-7) M there was a marked threshold increase in the mean cytotoxic anti-neoplastic activity for epirubicin-(C(3)-amide)-[anti-HER2/neu] from 9.9% to 66.9% (90.2% to 33.1% residual survival).


Asunto(s)
Antibióticos Antineoplásicos/síntesis química , Neoplasias de la Mama/tratamiento farmacológico , Epirrubicina/análogos & derivados , Receptor ErbB-2/antagonistas & inhibidores , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/enzimología , Adenocarcinoma/genética , Adenocarcinoma/patología , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacología , Neoplasias de la Mama/enzimología , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/patología , Línea Celular Tumoral , Ensayo de Inmunoadsorción Enzimática , Epirrubicina/síntesis química , Epirrubicina/farmacología , Femenino , Humanos , Inmunoglobulina G/inmunología , Procesos Fotoquímicos , Células Tumorales Cultivadas , Rayos Ultravioleta
7.
J Cancer Ther ; 3(5A): 689-711, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26225216

RESUMEN

Gemcitabine is a pyrimidine nucleoside analog that becomes triphosphorylated intracellularly where it competitively inhibits cytidine incorporation into DNA strands. Another mechanism-of-action of gemcitabine (diphosphorylated form) involves irreversible inhibition of the enzyme ribonucleotide reductase thereby preventing deoxyribonucleotide synthesis. Functioning as a potent chemotherapeutic gemcitabine promote decreases in neoplastic cell proliferation and apoptosis which is frequently found to be effective for the treatment of several leukemias and a wide spectrum of carcinomas. A brief plasma half-life in part due to rapid deamination and chemotherapeutic-resistance restricts the utility of gemcit-abine in clinical oncology. Selective "targeted" delivery of gemcitabine represents a potential molecular strategy for simultaneously prolonging its plasma half-life and minimizing innocient tissues and organ systems exposure to chemotherapy. The molecular design and an organic chemistry based synthesis reaction is described that initially generates a UV-photoactivated gemcitabine intermediate. In a subsequent phase of the synthesis method the UV-photoactivated gemcitabine intermediate is covalently bonded to a monoclonal immunoglobulin yielding an end-product in the form of gemcitabine-(C4-amide)-[anti-HER2/neu]. Analysis by SDS-PAGE/chemiluminescent auto-radiography did not detect evidence of gemcitabine-(C4-amide)-[anti-HER2/neu] polymerization or degradative fragmentation while cell-ELISA demonstrated retained binding-avidity for HER2/neu trophic membrane receptor complexes highly over-expressed by chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3). Compared to chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3), the covalent immunochemotherapeutic, gemcitabine-(C4-amide)-[anti-HER2/neu] is anticipated to exert greater levels of cytotoxic anti-neoplastic potency against other neoplastic cell types like pancreatic carcinoma, small-cell lung carcinoma, neuroblastoma, glioblastoma, oral squamous cell carcinoma, cervical epitheliod carcinoma, or leukemia/lymphoid neoplastic cell types based on their reported sensitivity to gemcitabine and gemcitabine covalent conjugates.

8.
J Cancer Ther ; 2(1): 22-39, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26229727

RESUMEN

PURPOSE: Discover the anti-neoplastic efficacy of epirubicin-(C13-imino)-[anti-HER2/neu] against chemotherapeutic-resistant SKBr-3 mammary carcinoma and delineate the capacity of selenium to enhance it's cytotoxic anti-neoplastic potency. METHODS: In molar excess, EMCH was combined with epirubicin to create a covalent epirubicin-(C13-imino)-EMCH-maleimide intermediate with sulfhydryl-reactive properties. Monoclonal immunoglobulin selective for HER2/neu was then thiolated with 2-iminothiolane at the terminal ε-amine group of lysine residues. The sulfhydryl-reactive epirubicin-(C13-imino)-EMCH intermediate was then combined with thiolated anti-HER2/neu monoclonal immunoglobulin. Western-blot analysis was utilized to characterize the molecular weight profiles while binding of epirubicin-(C13-imino)-[anti-HER2/neu] to membrane receptors was determined by cell-ELISA utilizing populations of SKBr-3 mammary carcinoma that highly over-expresses HER2/neu complexes. Anti-neoplastic potency of epirubicin-(C13-imino)-[anti-HER2/neu] between the epirubicin-equivalent concentrations of 10-12 M and 10-7 M was determined by vitality staining analysis with and without the presence of selenium (5 µM). RESULTS: Epiribucin-(C13-imino)-[anti-HER2/neu] between epirubicin-equivalent concentrations of 10-8 M to 10-7 M consistently evoked higher anti-neoplastic potency than "free" non-conjugated epirubicin which corresponded with previous investigations utilizing epirubicin-(C3-amide)-[anti-HER2/neu] and epirubicin-(C3-amide)-[anti-EGFR]. Selenium at 5 mM consistently enhanced the cytotoxic anti-neoplastic potency of epirubicin-(C13-imino)-[anti-HER2/neu] at epirubicin equivalent concentrations (10-12 to 10-7 M). CONCLUSIONS: Epirubicin-(C13-imino)-[anti-HER2/neu] is more potent than epirubicin against chemotherapeutic-resistant SKBr-3 mammary carcinoma and selenium enhances epirubicin-(C13-imino)-[anti-HER2/neu] potency. The methodology applied for synthesizing epirubicin-(C13-imino)-[anti-HER2/neu] is relatively time convenient and has low instrumentation requirements.

9.
Acta Biomed ; 80(3): 243-61, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-20578419

RESUMEN

BACKGROUND AND AIM OF WORK: Limited research to date has characterized the potential for HRPO to function as a primary molecular probe. METHODS: Pulmonary airway fluid was developed by non-reducing far-Western (ligand) blot analyses utilizing conjugated HRPO-strepavidin or non-conjugated HRPO without the presence of primary immunoglobulin. Endogenous esterase-like biochemical activity of fractions within pulmonary airway fluid was inactivated to determine if they were capable of biochemically converting HRPO chemiluminescent substrate. Complementary analyses modified pulmonary fluid and HRPO with beta-galactosidase and alpha-mannosidase respectively, in addition to determining the influence of mannose and maltose competitive binding on HRPO far-Western (ligand) blot analyses. Identification of pulmonary fluid fractions detected by HRPO far-Western blot analyses was determined by mass spectrometry. RESULTS: Modification of pulmonary fluid with beta-galactosidase, and HRPO with alpha-mannosidase in concert with maltose and mannose competitive binding analyses altered the intensity and spectrum of pulmonary fluid fractions detected by HRPO far-Western blot analysis. Identity of pulmonary airway fluid fractions detected by HRPO far-Western (ligand) blot analysis were transferrin, dynein, albumin precursor, and two 156 kDa equine peptide fragments. CONCLUSIONS: HRPO can function as a partially-selective primary molecular probe when applied in either a conjugated or non-conjugated form. Some protein fractions can form complexes with HRPO through molecular mechanisms that involve physical interactions at the terminal alpha-mannose-rich regions of HRPO glycan side-chains. Based on its known molecular composition and structure, HRPO provides an opportunity for the development of diagnostics methodologies relevant to disease biomarkers that possess mannose-binding avidity.


Asunto(s)
Líquidos Corporales/química , Peroxidasa de Rábano Silvestre , Pulmón/química , Lectina de Unión a Manosa/química , Técnicas de Sonda Molecular , Animales , Far-Western Blotting , Electroforesis en Gel de Poliacrilamida , Peroxidasa de Rábano Silvestre/metabolismo , Caballos , Espectrometría de Masas , Membranas Artificiales , Unión Proteica , Proteínas/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...