Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(16)2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39201578

RESUMEN

Cyclin-dependent kinase-like 5 (CDKL5) is a serine/threonine protein kinase involved in human brain development and functioning. Mutations in CDKL5, especially in its catalytic domain, cause a severe developmental condition named CDKL5 deficiency disorder. Nevertheless, molecular studies investigating the structural consequences of such mutations are still missing. The CDKL5 catalytic domain harbors different sites of post-translational modification, such as phosphorylations, but their role in catalytic activity, protein folding, and stability has not been entirely investigated. With this work, we describe the expression pattern of the CDKL5 catalytic domain in Escherichia coli demonstrating that it predominantly aggregates. However, the use of solubility tags, the lowering of the expression temperature, the manual codon optimization to overcome an internal translational start, and the incubation of the protein with K+ and MgATP allow the collection of a soluble catalytically active kinase. Interestingly, the resulting protein exhibits hypophosphorylation compared to its eukaryotic counterpart, proving that bacteria are a useful tool to achieve almost unmodified CDKL5. Posing questions about the CDKL5 autoactivation mechanism and the determinants for its stability, this research provides a valuable platform for comparative biophysical studies between bacterial and eukaryotic-expressed proteins, contributing to our understanding of neurodevelopmental disorders associated with CDKL5 dysfunction.


Asunto(s)
Dominio Catalítico , Escherichia coli , Proteínas Serina-Treonina Quinasas , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/química , Humanos , Escherichia coli/metabolismo , Escherichia coli/genética , Biosíntesis de Proteínas , Agregado de Proteínas , Síndromes Epilépticos/metabolismo , Síndromes Epilépticos/genética , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Espasmos Infantiles
2.
Int J Mol Sci ; 25(2)2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38256243

RESUMEN

Amyloid deposition within stenotic aortic valves (AVs) also appears frequent in the absence of cardiac amyloidosis, but its clinical and pathophysiological relevance has not been investigated. We will elucidate the rate of isolated AV amyloid deposition and its potential clinical and pathophysiological significance in aortic stenosis (AS). In 130 patients without systemic and/or cardiac amyloidosis, we collected the explanted AVs during cardiac surgery: 57 patients with calcific AS and 73 patients with AV insufficiency (41 with AV sclerosis and 32 without, who were used as controls). Amyloid deposition was found in 21 AS valves (37%), 4 sclerotic AVs (10%), and none of the controls. Patients with and without isolated AV amyloid deposition had similar clinical and echocardiographic characteristics and survival rates. Isolated AV amyloid deposition was associated with higher degrees of AV fibrosis (p = 0.0082) and calcification (p < 0.0001). Immunohistochemistry analysis suggested serum amyloid A1 (SAA1), in addition to transthyretin (TTR), as the protein possibly involved in AV amyloid deposition. Circulating SAA1 levels were within the normal range in all groups, and no difference was observed in AS patients with and without AV amyloid deposition. In vitro, AV interstitial cells (VICs) were stimulated with interleukin (IL)-1ß which induced increased SAA1-mRNA both in the control VICs (+6.4 ± 0.5, p = 0.02) and the AS VICs (+7.6 ± 0.5, p = 0.008). In conclusion, isolated AV amyloid deposition is frequent in the context of AS, but it does not appear to have potential clinical relevance. Conversely, amyloid deposition within AV leaflets, probably promoted by local inflammation, could play a role in AS pathophysiology.


Asunto(s)
Amiloidosis , Estenosis de la Válvula Aórtica , Calcinosis , Humanos , Catéteres , Calcificación Fisiológica , Interleucina-1beta
3.
Appl Microbiol Biotechnol ; 108(1): 155, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38244047

RESUMEN

Agri-food residues offer significant potential as a raw material for the production of L-lactic acid through microbial fermentation. Weizmannia coagulans, previously known as Bacillus coagulans, is a spore-forming, lactic acid-producing, gram-positive, with known probiotic and prebiotic properties. This study aimed to evaluate the feasibility of utilizing untreated citrus waste as a sustainable feedstock for the production of L-lactic acid in a one-step process, by using the strain W. coagulans MA-13. By employing a thermophilic enzymatic cocktail (Cellic CTec2) in conjunction with the hydrolytic capabilities of MA-13, biomass degradation was enhanced by up to 62%. Moreover, batch and fed-batch fermentation experiments demonstrated the complete fermentation of glucose into L-lactic acid, achieving a concentration of up to 44.8 g/L. These results point to MA-13 as a microbial cell factory for one-step production of L-lactic acid, by combining cost-effective saccharification with MA-13 fermentative performance, on agri-food wastes. Moreover, the potential of this approach for sustainable valorization of agricultural waste streams is successfully proven. KEY POINTS: • Valorization of citrus waste, an abundant residue in Mediterranean countries. • Sustainable production of the L-( +)-lactic acid in one-step process. • Enzymatic pretreatment is a valuable alternative to the use of chemical.


Asunto(s)
Bacillus coagulans , Ácido Láctico , Ácido Láctico/metabolismo , Bacillus coagulans/metabolismo , Fermentación , Glucosa/metabolismo , Alimentos
4.
Front Aging Neurosci ; 15: 1277546, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38131010

RESUMEN

Introduction: Aging is a physiological process occurring in all living organisms. It is characterized by a progressive deterioration of the physiological and cognitive functions of the organism, accompanied by a gradual impairment of mechanisms involved in the regulation of tissue and organ homeostasis, thus exacerbating the risk of developing pathologies, including cancer and neurodegenerative disorders. Methods: In the present work, for the first time, the influence of aging has been investigated in the brain cortex of the Podolica cattle breed, through LC-MS/MS-based differential proteomics and the bioinformatic analysis approach (data are available via ProteomeXchange with identifier PXD044108), with the aim of identifying potential aging or longevity markers, also associated with a specific lifestyle. Results and discussion: We found a significant down-regulation of proteins involved in cellular respiration, dendric spine development, synaptic vesicle transport, and myelination. On the other hand, together with a reduction of the neurofilament light chain, we observed an up-regulation of both GFAP and vimentin in the aged samples. In conclusion, our data pave the way for a better understanding of molecular mechanisms underlying brain aging in grazing cattle, which could allow strategies to be developed that are aimed at improving animal welfare and husbandry practices of dairy cattle from intensive livestock.

5.
Front Aging Neurosci ; 15: 1274073, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37965495

RESUMEN

Brain aging is a physiological process associated with physical and cognitive decline; however, in both humans and animals, it can be regarded as a risk factor for neurodegenerative disorders, such as Alzheimer's disease. Among several brain regions, hippocampus appears to be more susceptible to detrimental effects of aging. Hippocampus belongs to limbic system and is mainly involved in declarative memories and context-dependent spatial-learning, whose integrity is compromised in an age-dependent manner. In the present work, taking advantage of liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based proteomics, we sought to identify proteins differentially expressed in the hippocampus of the aged grazing milk cows. Our exploratory findings showed that, out of 707 identified proteins, 112 were significantly altered in old cattle, when compared to the adult controls, and functional clusterization highlighted their involvement in myelination, synaptic vesicle, metabolism, and calcium-related biological pathways. Overall, our preliminary data pave the way for the future studies, aimed at better characterizing the role of such a subcortical brain region in the age-dependent cognitive decline, as well as identifying early aging markers to improve animal welfare and husbandry practices of dairy cattle from intensive livestock.

6.
Biomolecules ; 13(10)2023 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-37892230

RESUMEN

The larval stages of the tobacco budworm, Heliothis virescens (Fabricius) (Lepidoptera: Noctuidae), are parasitized by the endophagous parasitoid wasp, Toxoneuron nigriceps (Viereck) (Hymenoptera: Braconidae). During the injections of eggs, this parasitoid wasp also injects into the host body the secretion of the venom gland and the calyx fluid, which contains a polydnavirus (T. nigriceps BracoVirus: TnBV) and the Ovarian calyx fluid Proteins (OPs). The effects of the OPs on the host immune system have recently been described. In particular, it has been demonstrated that the OPs cause hemocytes to undergo a number of changes, such as cellular oxidative stress, actin cytoskeleton modifications, vacuolization, and the inhibition of hemocyte encapsulation capacity, which results in both a loss of hemocyte functionality and cell death. In this study, by using a combined transcriptomic and proteomic analysis, the main components of T. nigriceps ovarian calyx fluid proteins were identified and their possible role in the parasitic syndrome was discussed. This study provides useful information to support the analysis of the function of ovarian calyx fluid proteins, to better understand T. nigriceps parasitization success and for a more thorough understanding of the components of ovarian calyx fluid proteins and their potential function in combination with other parasitoid factors.


Asunto(s)
Mariposas Nocturnas , Poríferos , Avispas , Animales , Transcriptoma , Proteómica , Larva
7.
Pharmaceutics ; 15(7)2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37514183

RESUMEN

Metals are indispensable for the life of all organisms, and their dysregulation leads to various disorders due to the disruption of their homeostasis. Nowadays, various transition metals are used in pharmaceutical products as diagnostic and therapeutic agents because their electronic structure allows them to adjust the properties of molecules differently from organic molecules. Therefore, interest in the study of metal-drug complexes from different aspects has been aroused, and numerous approaches have been developed to characterize, activate, deliver, and clarify molecular mechanisms. The integration of these different approaches, ranging from chemoproteomics to nanoparticle systems and various activation strategies, enables the understanding of the cellular responses to metal drugs, which may form the basis for the development of new drugs and/or the modification of currently used drugs. The purpose of this review is to briefly summarize the recent advances in this field by describing the technological platforms and their potential applications for identifying protein targets for discovering the mechanisms of action of metallodrugs and improving their efficiency during delivery.

8.
Insects ; 14(5)2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37233092

RESUMEN

Antimicrobial peptides (AMPs) are a chemically and structurally heterogeneous family of molecules produced by a large variety of living organisms, whose expression is predominant in the sites most exposed to microbial invasion. One of the richest natural sources of AMPs is insects which, over the course of their very long evolutionary history, have adapted to numerous and different habitats by developing a powerful innate immune system that has allowed them to survive but also to assert themselves in the new environment. Recently, due to the increase in antibiotic-resistant bacterial strains, interest in AMPs has risen. In this work, we detected AMPs in the hemolymph of Hermetia illucens (Diptera, Stratiomyidae) larvae, following infection with Escherichia coli (Gram negative) or Micrococcus flavus (Gram positive) and from uninfected larvae. Peptide component, isolated via organic solvent precipitation, was analyzed by microbiological techniques. Subsequent mass spectrometry analysis allowed us to specifically identify peptides expressed in basal condition and peptides differentially expressed after bacterial challenge. We identified 33 AMPs in all the analyzed samples, of which 13 are specifically stimulated by Gram negative and/or Gram positive bacterial challenge. AMPs mostly expressed after bacterial challenge could be responsible for a more specific activity.

9.
Int J Mol Sci ; 24(5)2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36901983

RESUMEN

Enzyme replacement therapy is the only therapeutic option for Fabry patients with completely absent AGAL activity. However, the treatment has side effects, is costly, and requires conspicuous amounts of recombinant human protein (rh-AGAL). Thus, its optimization would benefit patients and welfare/health services (i.e., society at large). In this brief report, we describe preliminary results paving the way for two possible approaches: i. the combination of enzyme replacement therapy with pharmacological chaperones; and ii. the identification of AGAL interactors as possible therapeutic targets on which to act. We first showed that galactose, a low-affinity pharmacological chaperone, can prolong AGAL half-life in patient-derived cells treated with rh-AGAL. Then, we analyzed the interactomes of intracellular AGAL on patient-derived AGAL-defective fibroblasts treated with the two rh-AGALs approved for therapeutic purposes and compared the obtained interactomes to the one associated with endogenously produced AGAL (data available as PXD039168 on ProteomeXchange). Common interactors were aggregated and screened for sensitivity to known drugs. Such an interactor-drug list represents a starting point to deeply screen approved drugs and identify those that can affect (positively or negatively) enzyme replacement therapy.


Asunto(s)
Enfermedad de Fabry , Humanos , Enfermedad de Fabry/metabolismo , alfa-Galactosidasa/metabolismo , Terapia de Reemplazo Enzimático/métodos , Isoenzimas/uso terapéutico , Proteínas Recombinantes/uso terapéutico
10.
Blood Adv ; 7(12): 2681-2693, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-36595486

RESUMEN

Gain-of-function mutations in PIEZO1 cause dehydrated hereditary stomatocytosis (DHS) or hereditary xerocytosis, an autosomal dominant hemolytic anemia characterized by high reticulocyte count, a tendency to macrocytosis, and mild jaundice, as well as by other variably penetrant clinical features, such as perinatal edema, severe thromboembolic complications after splenectomy, and hepatic iron overload. PIEZO1 mutations in DHS lead to slowed inactivation kinetics of the ion channel and/or facilitation of channel opening in response to physiological stimuli. To characterize the alterations of red blood cell proteome in patients with mutated PIEZO1, we used a differential approach to compare the proteome of patients with DHS (16 patients from 13 unrelated ancestries) vs healthy individuals. We identified new components in the regulation of the complex landscape of erythrocytes ion and volume balance mediated by PIEZO1. Specifically, the main impaired processes in patients with DHS were ion homeostasis, transmembrane transport, regulation of vesicle-mediated transport, and the proteasomal catabolic process. Functional assays demonstrated coexpression of PIEZO1 and band 3 when PIEZO1 was activated. Moreover, the alteration of the vesicle-mediated transport was functionally demonstrated by an increased vesiculation rate in patients with DHS compared with healthy controls. This finding also provides an explanation of the pathogenetic mechanism underlying the increased thrombotic rate observed in these patients. Finally, the newly identified proteins, involved in the intracellular signaling pathways altered by PIEZO1 mutations, could be used in the future as potential druggable targets in DHS.


Asunto(s)
Anemia Hemolítica Congénita , Mutación con Ganancia de Función , Embarazo , Femenino , Humanos , Anemia Hemolítica Congénita/genética , Anemia Hemolítica Congénita/complicaciones , Anemia Hemolítica Congénita/metabolismo , Proteoma/metabolismo , Hidropesía Fetal/genética , Hidropesía Fetal/metabolismo , Eritrocitos/metabolismo , Mutación , Canales Iónicos/genética
11.
Int J Mol Sci ; 23(21)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36361777

RESUMEN

The H Ferritin subunit (FTH1), as well as regulating the homeostasis of intracellular iron, is involved in complex pathways that might promote or inhibit carcinogenesis. This function may be mediated by its ability to interact with different molecules. To gain insight into the FTH1 interacting molecules, we analyzed its interactome in HEK293T cells. Fifty-one proteins have been identified, and among them, we focused our attention on a member of the peroxiredoxin family (PRDX6), an antioxidant enzyme that plays an important role in cell proliferation and in malignancy development. The FTH1/PRDX6 interaction was further supported by co-immunoprecipitation, in HEK293T and H460 cell lines and by means of computational methods. Next, we demonstrated that FTH1 could inhibit PRDX6-mediated proliferation and migration. Then, the results so far obtained suggested that the interaction between FTH1/PRDX6 in cancer cells might alter cell proliferation and migration, leading to a less invasive phenotype.


Asunto(s)
Apoferritinas , Peroxiredoxina VI , Humanos , Apoferritinas/genética , Peroxiredoxina VI/metabolismo , Células HEK293 , Proliferación Celular , Hierro/metabolismo
12.
Front Mol Biosci ; 9: 975570, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36225252

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes Coronavirus Disease 2019 (COVID-19), which, since 2019 in China, has rapidly become a worldwide pandemic. The aggressiveness and global spread were enhanced by the many SARS-CoV-2 variants that have been isolated up to now. These mutations affect mostly the viral glycoprotein Spike (S), the capsid protein mainly involved in the early stages of viral entry processes, through the recognition of specific receptors on the host cell surface. In particular, the subunit S1 of the Spike glycoprotein contains the Receptor Binding Domain (RBD) and it is responsible for the interaction with the angiotensin-converting enzyme 2 (ACE2). Although ACE2 is the primary Spike host receptor currently studied, it has been demonstrated that SARS-CoV-2 is also able to infect cells expressing low levels of ACE2, indicating that the virus may have alternative receptors on the host cells. The identification of the alternative receptors can better elucidate the pathogenicity and the tropism of SARS-CoV-2. Therefore, we investigated the Spike S1 interactomes, starting from host membrane proteins of non-pulmonary cell lines, such as human kidney (HK-2), normal colon (NCM460D), and colorectal adenocarcinoma (Caco-2). We employed an affinity purification-mass spectrometry (AP-MS) to pull down, from the membrane protein extracts of all cell lines, the protein partners of the recombinant form of the Spike S1 domain. The purified interactors were identified by a shotgun proteomics approach. The lists of S1 potential interacting proteins were then clusterized according to cellular localization, biological processes, and pathways, highlighting new possible S1 intracellular functions, crucial not only for the entrance mechanisms but also for viral replication and propagation processes.

13.
Insects ; 13(2)2022 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-35206718

RESUMEN

The endophagous parasitoid Toxoneuron nigriceps (Viereck) (Hymenoptera, Braconidae) of the larval stages of the tobacco budworm Heliothis virescens (Fabricius) (Lepidoptera, Noctuidae) injects the egg, the venom, the calyx fluid, which includes a Polydnavirus (T. nigriceps BracoVirus: TnBV) and the Ovarian Proteins (OPs) into the host body during oviposition. The host metabolism and immune system are disrupted prematurely shortly after parasitization by the combined action of the TnBV, venom, and OPs. OPs are involved in the early suppression of host immune response, before TnBV infects and expresses its genes in the host tissues. In this work, we evaluated the effect of HPLC fractions deriving from in toto OPs. Two fractions caused a reduction in hemocyte viability and were subsequently tested to detect changes in hemocyte morphology and functionality. The two fractions provoked severe oxidative stress and actin cytoskeleton disruption, which might explain the high rate of hemocyte mortality, loss of hemocyte functioning, and hence the host's reduced hemocyte encapsulation ability. Moreover, through a transcriptome and proteomic approach we identify the proteins of the two fractions: eight proteins were identified that might be involved in the observed host hemocyte changes. Our findings will contribute to a better understanding of the secreted ovarian components and their role in parasitoid wasp strategy for evading host immune responses.

14.
Biomolecules ; 11(8)2021 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-34439761

RESUMEN

Global warming is strongly affecting the maritime Antarctica climate and the consequent melting of perennial snow and ice covers resulted in increased colonization by plants. Colobanthus quitensis is a vascular plant highly adapted to the harsh environmental conditions of Antarctic Peninsula and understanding how the plant is responding to global warming is a new challenging target for modern cell physiology. To this aim, we performed differential proteomic analysis on C. quitensis plants grown in natural conditions compared to plants grown for one year inside open top chambers (OTCs) which determine an increase of about 4 °C at midday, mimicking the effect of global warming. A thorough analysis of the up- and downregulated proteins highlighted an extensive metabolism reprogramming leading to enhanced photoprotection and oxidative stress control as well as reduced content of cell wall components. Overall, OTCs growth seems to be advantageous for C. quitensis plants which could benefit from a better CO2 diffusion into the mesophyll and a reduced ROS-mediated photodamage.


Asunto(s)
Cambio Climático , Fenómenos Fisiológicos de las Plantas , Proteómica/métodos , Especies Reactivas de Oxígeno , Estrés Fisiológico , Regiones Antárticas , Antioxidantes , Pared Celular , Cromatografía Liquida , Biología Computacional , Calentamiento Global , Oxidación-Reducción , Estrés Oxidativo , Fotosíntesis , Isoformas de Proteínas , Espectrometría de Masas en Tándem , Temperatura , Regulación hacia Arriba
15.
Cell Death Dis ; 12(9): 797, 2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34404763

RESUMEN

The tumor microenvironment modulates cancer growth. Extracellular vesicles (EVs) have been identified as key mediators of intercellular communication, but their role in tumor growth is largely unexplored. Here, we demonstrate that EVs from sarcoma patients promote neoangiogenesis via a purinergic X receptor 4 (P2XR4) -dependent mechanism in vitro and in vivo. Using a proteomic approach, we analyzed the protein content of plasma EVs and identified critical activated pathways in human umbilical vein endothelial cells (HUVECs) and human progenitor hematopoietic cells (CD34+). We then showed that vessel formation was due to rapid mitochondrial activation, intracellular Ca2+ mobilization, increased extracellular ATP, and trafficking of the lysosomal P2XR4 to the cell membrane, which is required for cell motility and formation of stable branching vascular networks. Cell membrane translocation of P2XR4 was induced by proteins and chemokines contained in EVs (e.g. Del-1 and SDF-1). Del-1 was found expressed in many EVs from sarcoma tumors and several tumor types. P2XR4 blockade reduced EVs-induced vessels in angioreactors, as well as intratumor vascularization in mouse xenografts. Together, these findings identify P2XR4 as a key mediator of EVs-induced tumor angiogenesis via a signaling mediated by mitochondria-lysosome-sensing response in endothelial cells, and indicate a novel target for therapeutic interventions.


Asunto(s)
Micropartículas Derivadas de Células/metabolismo , Lisosomas/metabolismo , Neovascularización Patológica/metabolismo , Receptores Purinérgicos P2X4/metabolismo , Sarcoma/irrigación sanguínea , Sarcoma/patología , Animales , Calcio/metabolismo , Movimiento Celular , Citosol/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Ratones , Mitocondrias/metabolismo , Retina/patología , Sarcoma/sangre , Transducción de Señal , Viscosidad
16.
J Proteome Res ; 20(6): 3018-3030, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-33961438

RESUMEN

The fields of application of functional proteomics are not limited to the study of protein-protein interactions; they also extend to those involving protein complexes that bind DNA or RNA. These interactions affect fundamental processes such as replication, transcription, and repair in the case of DNA, as well as transport, translation, splicing, and silencing in the case of RNA. Analytical or preparative experimental approaches, both in vivo and in vitro, have been developed to isolate and identify DNA/RNA binding proteins by exploiting the advantage of the affinity shown by these proteins toward a specific oligonucleotide sequence. The present review proposes an overview of the approaches most commonly employed in proteomics applications for the identification of nucleic acid-binding proteins, such as affinity purification (AP) protocols, EMSA, chromatin purification methods, and CRISPR-based chromatin affinity purification, which are generally associated with mass spectrometry methodologies for the unbiased protein identification.


Asunto(s)
Proteómica , ARN , ADN/genética , Proteínas de Unión al ADN/genética , Espectrometría de Masas , ARN/genética
17.
Acta Neuropathol Commun ; 9(1): 81, 2021 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-33941276

RESUMEN

Chorea-Acanthocytosis (ChAc) is a devastating, little understood, and currently untreatable neurodegenerative disease caused by VPS13A mutations. Based on our recent demonstration that accumulation of activated Lyn tyrosine kinase is a key pathophysiological event in human ChAc cells, we took advantage of Vps13a-/- mice, which phenocopied human ChAc. Using proteomic approach, we found accumulation of active Lyn, γ-synuclein and phospho-tau proteins in Vps13a-/- basal ganglia secondary to impaired autophagy leading to neuroinflammation. Mice double knockout Vps13a-/- Lyn-/- showed normalization of red cell morphology and improvement of autophagy in basal ganglia. We then in vivo tested pharmacologic inhibitors of Lyn: dasatinib and nilotinib. Dasatinib failed to cross the mouse brain blood barrier (BBB), but the more specific Lyn kinase inhibitor nilotinib, crosses the BBB. Nilotinib ameliorates both Vps13a-/- hematological and neurological phenotypes, improving autophagy and preventing neuroinflammation. Our data support the proposal to repurpose nilotinib as new therapeutic option for ChAc patients.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Neuroacantocitosis/tratamiento farmacológico , Neuroacantocitosis/enzimología , Inhibidores de Proteínas Quinasas/administración & dosificación , Familia-src Quinasas/antagonistas & inhibidores , Animales , Dasatinib/administración & dosificación , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuroacantocitosis/genética , Pirimidinas/administración & dosificación , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Familia-src Quinasas/genética , Familia-src Quinasas/metabolismo
18.
Int J Mol Sci ; 22(4)2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33669725

RESUMEN

Trichostatin A ([R-(E,E)]-7-[4-(dimethylamino) phenyl]-N-hydroxy- 4,6-dimethyl- 7-oxo-2,4-heptadienamide, TSA) affects chromatin state through its potent histone deacetylase inhibitory activity. Interfering with the removal of acetyl groups from lysine residues in histones is one of many epigenetic regulatory processes that control gene expression. Histone deacetylase inhibition drives cells toward the differentiation stage, favoring the activation of specific genes. In this paper, we investigated the effects of TSA on H3 and H4 lysine acetylome and methylome profiling in mice embryonic stem cells (ES14), treated with trichostatin A (TSA) by using a new, untargeted approach, consisting of trypsin-limited proteolysis experiments coupled with MALDI-MS and LC-MS/MS analyses. The method was firstly set up on standard chicken core histones to probe the optimized conditions in terms of enzyme:substrate (E:S) ratio and time of proteolysis and, then, applied to investigate the global variations of the acetylation and methylation state of lysine residues of H3 and H4 histone in the embryonic stem cells (ES14) stimulated by TSA and addressed to differentiation. The proposed strategy was found in its simplicity to be extremely effective in achieving the identification and relative quantification of some of the most significant epigenetic modifications, such as acetylation and lysine methylation. Therefore, we believe that it can be used with equal success in wider studies concerning the characterization of all epigenetic modifications.


Asunto(s)
Células Madre Embrionarias/metabolismo , Histonas/metabolismo , Ácidos Hidroxámicos/farmacología , Lisina/metabolismo , Acetilación/efectos de los fármacos , Secuencia de Aminoácidos , Animales , Dimetilsulfóxido/farmacología , Células Madre Embrionarias/citología , Células Madre Embrionarias/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Histonas/química , Metilación/efectos de los fármacos , Ratones , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Péptidos/química , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Proteolisis/efectos de los fármacos
19.
Microb Cell Fact ; 20(1): 71, 2021 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-33736637

RESUMEN

BACKGROUND: The spore-forming lactic acid bacterium Bacillus coagulans MA-13 has been isolated from canned beans manufacturing and successfully employed for the sustainable production of lactic acid from lignocellulosic biomass. Among lactic acid bacteria, B. coagulans strains are generally recognized as safe (GRAS) for human consumption. Low-cost microbial production of industrially valuable products such as lactic acid and various enzymes devoted to the hydrolysis of oligosaccharides and lactose, is of great importance to the food industry. Specifically, α- and ß-galactosidases are attractive for their ability to hydrolyze not-digestible galactosides present in the food matrix as well as in the human gastrointestinal tract. RESULTS: In this work we have explored the potential of B. coagulans MA-13 as a source of metabolites and enzymes to improve the digestibility and the nutritional value of food. A combination of mass spectrometry analysis with conventional biochemical approaches has been employed to unveil the intra- and extra- cellular glycosyl hydrolase (GH) repertoire of B. coagulans MA-13 under diverse growth conditions. The highest enzymatic activity was detected on ß-1,4 and α-1,6-glycosidic linkages and the enzymes responsible for these activities were unambiguously identified as ß-galactosidase (GH42) and α-galactosidase (GH36), respectively. Whilst the former has been found only in the cytosol, the latter is localized also extracellularly. The export of this enzyme may occur through a not yet identified secretion mechanism, since a typical signal peptide is missing in the α-galactosidase sequence. A full biochemical characterization of the recombinant ß-galactosidase has been carried out and the ability of this enzyme to perform homo- and hetero-condensation reactions to produce galacto-oligosaccharides, has been demonstrated. CONCLUSIONS: Probiotics which are safe for human use and are capable of producing high levels of both α-galactosidase and ß-galactosidase are of great importance to the food industry. In this work we have proven the ability of B. coagulans MA-13 to over-produce these two enzymes thus paving the way for its potential use in treatment of gastrointestinal diseases.


Asunto(s)
Bacillus coagulans/enzimología , Galactósidos/metabolismo , Oligosacáridos/biosíntesis , Prebióticos , beta-Galactosidasa/metabolismo , Bacillus coagulans/crecimiento & desarrollo , Bacillus coagulans/metabolismo , Biocatálisis , Clonación Molecular , Estabilidad de Enzimas , Galactosa/análisis , Galactosa/metabolismo , Glicosilación , Concentración de Iones de Hidrógeno , Oligosacáridos/química , Análisis de Secuencia de ADN , Especificidad por Sustrato , alfa-Galactosidasa/metabolismo , beta-Galactosidasa/química , beta-Galactosidasa/genética
20.
Sci Rep ; 11(1): 5032, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33658582

RESUMEN

During oviposition, ectoparasitoid wasps not only inject their eggs but also a complex mixture of proteins and peptides (venom) in order to regulate the host physiology to benefit their progeny. Although several endoparasitoid venom proteins have been identified, little is known about the components of ectoparasitoid venom. To characterize the protein composition of Torymus sinensis Kamijo (Hymenoptera: Torymidae) venom, we used an integrated transcriptomic and proteomic approach and identified 143 venom proteins. Moreover, focusing on venom gland transcriptome, we selected additional 52 transcripts encoding putative venom proteins. As in other parasitoid venoms, hydrolases, including proteases, phosphatases, esterases, and nucleases, constitute the most abundant families in T. sinensis venom, followed by protease inhibitors. These proteins are potentially involved in the complex parasitic syndrome, with different effects on the immune system, physiological processes and development of the host, and contribute to provide nutrients to the parasitoid progeny. Although additional in vivo studies are needed, initial findings offer important information about venom factors and their putative host effects, which are essential to ensure the success of parasitism.


Asunto(s)
Desoxirribonucleasas/genética , Esterasas/genética , Proteínas de Insectos/genética , Péptido Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/genética , Proteoma/genética , Venenos de Avispas/química , Animales , Desoxirribonucleasas/clasificación , Desoxirribonucleasas/aislamiento & purificación , Desoxirribonucleasas/metabolismo , Esterasas/clasificación , Esterasas/aislamiento & purificación , Esterasas/metabolismo , Ontología de Genes , Proteínas de Insectos/clasificación , Proteínas de Insectos/aislamiento & purificación , Proteínas de Insectos/metabolismo , Anotación de Secuencia Molecular , Oviposición/fisiología , Péptido Hidrolasas/clasificación , Péptido Hidrolasas/aislamiento & purificación , Péptido Hidrolasas/metabolismo , Monoéster Fosfórico Hidrolasas/clasificación , Monoéster Fosfórico Hidrolasas/aislamiento & purificación , Monoéster Fosfórico Hidrolasas/metabolismo , Inhibidores de Proteasas/clasificación , Inhibidores de Proteasas/aislamiento & purificación , Inhibidores de Proteasas/metabolismo , Proteoma/clasificación , Proteoma/aislamiento & purificación , Proteoma/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcriptoma , Venenos de Avispas/toxicidad , Avispas/química , Avispas/patogenicidad , Avispas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...