Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Function (Oxf) ; 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38985001

RESUMEN

A detailed knowledge of the lipid composition of components of nephrons is crucial for understanding physiological processes and the development of kidney diseases. However, the lipidomic composition of kidney tubular segments is unknown. We manually isolated the proximal convoluted tubule (PCT), the cortical thick ascending limb of Henle's loop (cTAL) and the cortical collecting duct (CCD) from five lean and obese mice and subjected the samples to shotgun lipidomics analysis by high resolution mass spectrometry acquisition. Across all samples, more than five hundred lipid species were identified, quantified and compared. We observed significant compositional differences among the three tubular segments, which serve as true signatures. These intrinsic lipidomic features are associated with a distinct proteomic program that regulates highly specific physiological functions. The distinctive lipidomic features of each of the three segments are mostly based on the relative composition of neutral lipids, long-chain polyunsaturated fatty acids, sphingolipids, and ether phospholipids. These features support the hypothesis of a lipotype assigned to specific tubular segments. Obesity profoundly impacts the lipotype of proximal convoluted tubules. In conclusion, we present a comprehensive lipidomic analysis of three cortical segments of mouse kidney tubules. This valuable resource provides unparalleled detail that enhances our understanding of tubular physiology and the potential impact of pathological conditions.

2.
Int J Mol Sci ; 25(11)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38892145

RESUMEN

These last years, the growth factor GDF15 has emerged as a key element in many different biological processes. It has been established as being produced in response to many pathological states and is now referred to as a stress-related hormone. Regarding kidney functions, GDF15 has been involved in different pathologies such as chronic kidney disease, diabetic nephropathy, renal cancer, and so on. Interestingly, recent studies also revealed a role of GDF15 in the renal homeostatic mechanisms allowing to maintain constant, as far as possible, the plasma parameters such as pH and K+ values. In this review, we recapitulate the role of GDF15 in physiological and pathological context by focusing our interest on its renal effect.


Asunto(s)
Factor 15 de Diferenciación de Crecimiento , Riñón , Humanos , Factor 15 de Diferenciación de Crecimiento/metabolismo , Riñón/metabolismo , Riñón/fisiopatología , Animales , Enfermedades Renales/metabolismo , Enfermedades Renales/fisiopatología , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/fisiopatología , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/fisiopatología
3.
Nephron ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38824912

RESUMEN

Urea is the major endproduct of protein metabolism in mammals. In carnivores and omnivores a large load of urea is excreted daily in urine, with a concentration that is 30 to 100 times above that in plasma (and even more in rodents). This concentrating activity is important for the sake of water economy. Several facilitated transmembrane urea transporters have been identified and their regulation and role in the urinary concentrating mechanism have been well documented. However, too little attention has been given to the existence of energy-dependent urea transport. At least three have been functionally described in the mammalian kidney (one in the proximal tubule and two in the collecting duct), but none of the transporters involved has been identified molecularly. This review first presents functional evidence for an energy-dependent urea secretion that occurs exclusively in the pars recta of the proximal tubule (proximal straight tubule, PST). This includes a high fractional excretion of urea, the demonstration of a large addition of urea into the "loop of Henle". This addition is abolished in rats treated with cisplatin, a drug known to induce a very selective damage in PST cells. This urea secretion is also supported by the direct measurement of urea transport in isolated PST, and by the description of familial azotemia, a genetic anomaly likely due to a loss of function of an active or secondary active transporter secreting urea into the nephron. Second, this review proposes a candidate transmembrane transporter responsible for this urea secretion in the PST. SLC6A18 is expressed exclusively in the PST and has been identified as a glycine transporter because of the very abundant loss of glycine in urine in SLC6A18 knock-out mice. We propose that it is actually a glycine/urea antiport, secreting urea into the lumen in exchange of glycine and Na. Glycine is most likely recycled back into the cell via a transporter located in the brush border. Several experimental observations that support this hypothesis are presented and discussed. This secretion of urea contributes to accumulate urea in the inner medulla and thus to reabsorb water more efficiently in the collecting ducts. It also reduces the rise in plasma urea concentration that occurs after intake of proteins. Even if urea is the least toxic of all nitrogen end-products, it has significant toxic effects mostly due to protein carbamylation, a chemical reaction that significantly reduces the function of these proteins, like does glycosylation in diabetes mellitus. By modifying the composition of the tubular fluid in the thick ascending limb, urea secretion in the PST contributes, indirectly, to influence the "signal" at the macula densa that plays a crucial role in the regulation of the GFR by the tubulo-glomerular feedback. Taking into account this secondary active secretion of urea in the mammalian kidney provides a new understanding of the influence of protein intake on GFR, of the regulation of urea excretion, and of the urine concentrating mechanism.

4.
Arch Pharm (Weinheim) ; : e2400063, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38704748

RESUMEN

Lithium induces nephrogenic diabetes insipidus (NDI) and microcystic chronic kidney disease (CKD). As previous clinical studies suggest that NDI is dose-dependent and CKD is time-dependent, we investigated the effect of low exposition to lithium in a long-term experimental rat model. Rats were fed with a normal diet (control group), with the addition of lithium (Li+ group), or with lithium and amiloride (Li+/Ami group) for 6 months, allowing obtaining low plasma lithium concentrations (0.25 ± 0.06 and 0.43 ± 0.16 mmol/L, respectively). Exposition to low concentrations of plasma lithium levels prevented NDI but not microcystic dilations of kidney tubules, which were identified as collecting ducts (CDs) on immunofluorescent staining. Both hypertrophy, characterized by an increase in the ratio of nuclei per tubular area, and microcystic dilations were observed. The ratio between principal cells and intercalated cells was higher in microcystic than in hypertrophied tubules. There was no correlation between AQP2 messenger RNA levels and cellular remodeling of the CD. Additional amiloride treatment in the Li+/Ami group did not allow consistent morphometric and cellular composition changes compared to the Li+ group. Low exposition to lithium prevented overt NDI but not microcystic dilations of the CD, with differential cellular composition in hypertrophied and microcystic CDs, suggesting different underlying cellular mechanisms.

5.
iScience ; 27(6): 109737, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38799564

RESUMEN

Long-chain acyl-CoA synthetase family 4 (ACSL4) metabolizes long-chain polyunsaturated fatty acids (PUFAs), enriching cell membranes with phospholipids susceptible to peroxidation and drive ferroptosis. The role of ACSL4 and ferroptosis upon endoplasmic-reticulum (ER)-stress-induced acute kidney injury (AKI) is unknown. We used lipidomic, molecular, and cellular biology approaches along with a mouse model of AKI induced by ER stress to investigate the role of ACSL4 regulation in membrane lipidome remodeling in the injured tubular epithelium. Tubular epithelial cells (TECs) activate ACSL4 in response to STAT3 signaling. In this context, TEC membrane lipidome is remodeled toward PUFA-enriched triglycerides instead of PUFA-bearing phospholipids. TECs expressing ACSL4 in this setting are not vulnerable to ferroptosis. Thus, ACSL4 activity in TECs is driven by STAT3 signaling, but ACSL4 alone is not enough to sensitize ferroptosis, highlighting the significance of the biological context associated with the study model.

6.
Int J Mol Sci ; 25(7)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38612818

RESUMEN

Many genomic, anatomical and functional differences exist between the medullary (MTAL) and the cortical thick ascending limb of the loop of Henle (CTAL), including a higher expression of claudin-10 (CLDN10) in the MTAL than in the CTAL. Therefore, we assessed to what extent the Cldn10 gene expression is a determinant of differential gene expression between MTAL and CTAL. RNAs extracted from CTAL and MTAL microdissected from wild type (WT) and Cldn10 knock out mice (cKO) were analyzed by RNAseq. Differential and enrichment analyses (GSEA) were performed with interactive R Shiny software. Between WT and cKO MTAL, 637 genes were differentially expressed, whereas only 76 were differentially expressed between WT and cKO CTAL. Gene expression patterns and GSEA analyses in all replicates showed that WT MTAL did not cluster with the other replicates; no hierarchical clustering could be found between WT CTAL, cKO CTAL and cKO MTAL. Compared to WT replicates, cKO replicates were enriched in Cldn16, Cldn19, Pth1r, (parathyroid hormone receptor type 1), Casr (calcium sensing receptor) and Vdr (Vitamin D Receptor) mRNA in both the cortex and medulla. Cldn10 is associated with gene expression patterns, including genes specifically involved in divalent cations reabsorption in the TAL.


Asunto(s)
Médula Suprarrenal , Extremidades , Animales , Ratones , Claudinas/genética , Ratones Noqueados , Expresión Génica
7.
Front Pharmacol ; 14: 1293578, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38149052

RESUMEN

Introduction: Cystic fibrosis (CF) is caused by defective Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) proteins. CFTR controls chloride (Cl-) and bicarbonate (HCO3 -) transport into the Airway Surface Liquid (ASL). We investigated the impact of F508del-CFTR correction on HCO3 - secretion by studying transepithelial HCO3 - fluxes. Methods: HCO3 - secretion was measured by pH-stat technique in primary human respiratory epithelial cells from healthy subjects (WT) and people with CF (pwCF) carrying at least one F508del variant. Its changes after CFTR modulation by the triple combination VX445/661/770 and in the context of TNF-α+IL-17 induced inflammation were correlated to ASL pH and transcriptional levels of CFTR and other HCO3 - transporters of airway epithelia such as SLC26A4 (Pendrin), SLC26A9 and NBCe1. Results: CFTR-mediated HCO3 - secretion was not detected in F508del primary human respiratory epithelial cells. It was rescued up to ∼ 80% of the WT level by VX-445/661/770. In contrast, TNF-α+IL-17 normalized transepithelial HCO3 - transport and increased ASL pH. This was related to an increase in SLC26A4 and CFTR transcript levels. VX-445/661/770 induced an increase in pH only in the context of inflammation. Effects on HCO3 - transport were not different between F508del homozygous and F508del compound heterozygous CF airway epithelia. Conclusion: Our studies show that correction of F508del-CFTR HCO3 - is not sufficient to buffer acidic ASL and inflammation is a key regulator of HCO3 - secretion in CF airways. Prediction of the response to CFTR modulators by theratyping should take into account airway inflammation.

9.
Acta Physiol (Oxf) ; 239(2): e14046, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37665159

RESUMEN

OBJECTIVE: To understand the mechanisms involved in the response to a low-K+ diet (LK), we investigated the role of the growth factor GDF15 and the ion pump H,K-ATPase type 2 (HKA2) in this process. METHODS: Male mice of different genotypes (WT, GDF15-KO, and HKA2-KO) were fed an LK diet for different periods of time. We analyzed GDF15 levels, metabolic and physiological parameters, and the cellular composition of collecting ducts. RESULTS: Mice fed an LK diet showed a 2-4-fold increase in plasma and urine GDF15 levels. Compared to WT mice, GDF15-KO mice rapidly developed hypokalemia due to impaired renal adaptation. This is related to their 1/ inability to increase the number of type A intercalated cells (AIC) and 2/ absence of upregulation of H,K-ATPase type 2 (HKA2), the two processes responsible for K+ retention. Interestingly, we showed that the GDF15-mediated proliferative effect on AIC was dependent on the ErbB2 receptor and required the presence of HKA2. Finally, renal leakage of K+ induced a reduction in muscle mass in GDF15-KO mice fed LK diet. CONCLUSIONS: In this study, we showed that GDF15 and HKA2 are linked and play a central role in the response to K+ restriction by orchestrating the modification of the cellular composition of the collecting duct.

10.
Front Physiol ; 14: 1264296, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37719462

RESUMEN

Consumption of salt (NaCl) and potassium (K+) has been completely modified, switching from a rich-K+/low-NaCl diet in the hunter-gatherer population to the opposite in the modern, westernized population. The ability to conserve K+ is crucial to maintain the plasma K+ concentration in a physiological range when dietary K+ intake is decreased. Moreover, a chronic reduction in the K+ intake is correlated with an increased blood pressure, an effect worsened by a high-Na+ diet. The renal adaptation to a low-K+ diet in order to maintain the plasma K+ level in the normal range is complex and interconnected with the mechanisms of the Na+ balance. In this short review, we will recapitulate the general mechanisms allowing the plasma K+ value to remain in the normal range, when there is a necessity to retain K+ (response to low-K+ diet and adaptation to gestation), by focusing on the processes occurring in the most distal part of the nephron. We will particularly outline the mechanisms of K+ reabsorption and discuss the consequences of its absence on the Na+ transport systems and the regulation of the extracellular compartment volume and blood pressure.

11.
J Intern Med ; 293(1): 4-22, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35909256

RESUMEN

The kidneys, by equilibrating the outputs to the inputs, are essential for maintaining the constant volume, pH, and electrolyte composition of the internal milieu. Inability to do so, either because of internal kidney dysfunction (primary alteration) or because of some external factors (secondary alteration), leads to pathologies of varying severity, leading to modification of these parameters and affecting the functions of other organs. Alterations of the functions of the collecting duct (CD), the most distal part of the nephron, have been extensively studied and have led to a better diagnosis, better management of the related diseases, and the development of therapeutic tools. Thus, dysfunctions of principal cell-specific transporters such as ENaC or AQP2 or its receptors (mineralocorticoid or vasopressin receptors) caused by mutations or by compounds present in the environment (lithium, antibiotics, etc.) have been demonstrated in a variety of syndromes (Liddle, pseudohypoaldosteronism type-1, diabetes insipidus, etc.) affecting salt, potassium, and water balance. In parallel, studies on specific transporters (H+ -ATPase, anion exchanger 1) in intercalated cells have revealed the mechanisms of related tubulopathies like distal renal distal tubular acidosis or Sjögren syndrome. In this review, we will recapitulate the mechanisms of most of the primary and secondary alteration of the ion transport system of the CD to provide a better understanding of these diseases and highlight how a targeted perturbation may affect many different pathways due to the strong crosstalk and entanglements between the different actors (transporters, cell types).


Asunto(s)
Acidosis Tubular Renal , Túbulos Renales Colectores , Humanos , Túbulos Renales Colectores/metabolismo , Acuaporina 2/metabolismo , Nefronas/metabolismo , Riñón , Acidosis Tubular Renal/metabolismo , Agua/metabolismo
12.
JCI Insight ; 7(22)2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36219481

RESUMEN

The fluid covering the surface of airway epithelia represents a first barrier against pathogens. The chemical and physical properties of the airway surface fluid are controlled by the activity of ion channels and transporters. In cystic fibrosis (CF), loss of CFTR chloride channel function causes airway surface dehydration, bacterial infection, and inflammation. We investigated the effects of IL-17A plus TNF-α, 2 cytokines with relevant roles in CF and other chronic lung diseases. Transcriptome analysis revealed a profound change with upregulation of several genes involved in ion transport, antibacterial defense, and neutrophil recruitment. At the functional level, bronchial epithelia treated in vitro with the cytokine combination showed upregulation of ENaC channel, ATP12A proton pump, ADRB2 ß-adrenergic receptor, and SLC26A4 anion exchanger. The overall result of IL-17A/TNF-α treatment was hyperviscosity of the airway surface, as demonstrated by fluorescence recovery after photobleaching (FRAP) experiments. Importantly, stimulation with a ß-adrenergic agonist switched airway surface to a low-viscosity state in non-CF but not in CF epithelia. Our study suggests that CF lung disease is sustained by a vicious cycle in which epithelia cannot exit from the hyperviscous state, thus perpetuating the proinflammatory airway surface condition.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Humanos , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Depuración Mucociliar , Interleucina-17/farmacología , Factor de Necrosis Tumoral alfa/farmacología , Adrenérgicos/farmacología , Células Epiteliales/metabolismo , Fibrosis Quística/genética , Citocinas/metabolismo , ATPasa Intercambiadora de Hidrógeno-Potásio
13.
Cells ; 11(9)2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35563683

RESUMEN

The Mineralocorticoid Receptor (MR) mediates the sodium-retaining action of aldosterone in the distal nephron, but mechanisms regulating MR expression are still poorly understood. We previously showed that RNA Binding Proteins (RBPs) regulate MR expression at the post-transcriptional level in response to variations of extracellular tonicity. Herein, we highlight a novel regulatory mechanism involving the recruitment of microRNAs (miRNAs) under hypertonicity. RT-qPCR validated miRNAs candidates identified by high throughput screening approaches and transfection of a luciferase reporter construct together with miRNAs Mimics or Inhibitors demonstrated their functional interaction with target transcripts. Overexpression strategies using Mimics or lentivirus revealed the impact on MR expression and signaling in renal KC3AC1 cells. miR-324-5p and miR-30c-2-3p expression are increased under hypertonicity in KC3AC1 cells. These miRNAs directly affect Nr3c2 (MR) transcript stability, act with Tis11b to destabilize MR transcript but also repress Elavl1 (HuR) transcript, which enhances MR expression and signaling. Overexpression of miR-324-5p and miR-30c-2-3p alter MR expression and signaling in KC3AC1 cells with blunted responses in terms of aldosterone-regulated genes expression. We also confirm that their expression is increased by hypertonicity in vivo in the kidneys of mice treated with furosemide. These findings may have major implications for the pathogenesis of renal dysfunctions, sodium retention, and mineralocorticoid resistance.


Asunto(s)
MicroARNs/metabolismo , Receptores de Mineralocorticoides , Aldosterona/metabolismo , Animales , Riñón/metabolismo , Ratones , MicroARNs/genética , Mineralocorticoides/metabolismo , Receptores de Mineralocorticoides/genética , Receptores de Mineralocorticoides/metabolismo , Transducción de Señal , Sodio/metabolismo
14.
JCI Insight ; 6(15)2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-34166227

RESUMEN

Idiopathic nephrotic syndrome (INS) is characterized by proteinuria and renal sodium retention leading to edema. This sodium retention is usually attributed to epithelial sodium channel (ENaC) activation after plasma aldosterone increase. However, most nephrotic patients show normal aldosterone levels. Using a corticosteroid-clamped (CC) rat model of INS (CC-PAN), we showed that the observed electrogenic and amiloride-sensitive Na retention could not be attributed to ENaC. We then identified a truncated variant of acid-sensing ion channel 2b (ASIC2b) that induced sustained acid-stimulated sodium currents when coexpressed with ASIC2a. Interestingly, CC-PAN nephrotic ASIC2b-null rats did not develop sodium retention. We finally showed that the expression of the truncated ASIC2b in the kidney was dependent on the presence of albumin in the tubule lumen and activation of ERK in renal cells. Finally, the presence of ASIC2 mRNA was also detected in kidney biopsies from patients with INS but not in any of the patients with other renal diseases. We have therefore identified a variant of ASIC2b responsible for the renal Na retention in the pathological context of INS.


Asunto(s)
Canales Iónicos Sensibles al Ácido/metabolismo , Riñón , Sistema de Señalización de MAP Quinasas , Síndrome Nefrótico , Canales de Sodio/metabolismo , Sodio , Albúminas/metabolismo , Animales , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Homeostasis , Riñón/metabolismo , Riñón/patología , Síndrome Nefrótico/sangre , Síndrome Nefrótico/metabolismo , Proteinuria/metabolismo , Ratas , Sodio/sangre , Sodio/metabolismo
15.
Acta Physiol (Oxf) ; 232(3): e13661, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33840159

RESUMEN

AIM: Type A intercalated cells of the renal collecting duct participate in the maintenance of the acid/base balance through their capacity to adapt proton secretion to homeostatic requirements. We previously showed that increased proton secretion stems in part from the enlargement of the population of proton secreting cells in the outer medullary collecting duct through division of fully differentiated cells, and that this response is triggered by growth/differentiation factor 15. This study aimed at deciphering the mechanism of acid load-induced secretion of Gdf15 and its mechanism of action. METHODS: We developed an original method to evaluate the proliferation of intercalated cells and applied it to genetically modified or pharmacologically treated mice under basal and acid-loaded conditions. RESULTS: Gdf15 is secreted by principal cells of the collecting duct in response to the stimulation of vasopressin receptors. Vasopressin-induced production of cAMP triggers activation of AMP-stimulated kinases and of Na,K-ATPase, and induction of p53 and Gdf15. Gdf15 action on intercalated cells is mediated by ErbB2 receptors, the activation of which triggers the expression of cyclin d1, of p53 and anti-proliferative genes, and of Egr1. CONCLUSION: Acidosis-induced proliferation of intercalated cells results from a cross talk with principal cells which secrete Gdf15 in response to their stimulation by vasopressin. Thus, vasopressin is a major determinant of the collecting duct cellular homeostasis as it promotes proliferation of intercalated cells under acidosis conditions and of principal cells under normal acid-base status.


Asunto(s)
Acidosis , Túbulos Renales Colectores , Animales , Proliferación Celular , Ratones , Nefronas , ATPasa Intercambiadora de Sodio-Potasio
16.
Sci Rep ; 11(1): 1833, 2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33469051

RESUMEN

Hyperkalemia is frequently observed in patients at the end-stage of chronic kidney disease (CKD), and has possible harmful consequences on cardiac function. Many strategies are currently used to manage hyperkalemia, one consisting of increasing fecal K+ excretion through the administration of cation-exchange resins. In this study, we explored another more specific method of increasing intestinal K+ secretion by inhibiting the H,K-ATPase type 2 (HKA2), which is the main colonic K+ reabsorptive pathway. We hypothetised that the absence of this pump could impede the increase of plasma K+ levels following nephronic reduction (N5/6) by favoring fecal K+ secretion. In N5/6 WT and HKA2KO mice under normal K+ intake, the plasma K+ level remained within the normal range, however, a load of K+ induced strong hyperkalemia in N5/6 WT mice (9.1 ± 0.5 mM), which was significantly less pronounced in N5/6 HKA2KO mice (7.9 ± 0.4 mM, p < 0.01). This was correlated to a higher capacity of HKA2KO mice to excrete K+ in their feces. The absence of HKA2 also increased fecal Na+ excretion by inhibiting its colonic ENaC-dependent absorption. We also showed that angiotensin-converting-enzyme inhibitor like enalapril, used to treat hypertension during CKD, induced a less severe hyperkalemia in N5/6 HKA2KO than in N5/6 WT mice. This study therefore provides the proof of concept that the targeted inhibition of HKA2 could be a specific therapeutic maneuver to reduce plasma K+ levels in CKD patients.


Asunto(s)
Colon/metabolismo , Nefronas/metabolismo , Potasio/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/antagonistas & inhibidores , Animales , Heces , Hiperpotasemia/metabolismo , Hiperpotasemia/prevención & control , Ratones , Modelos Animales , Fenotipo , Potasio/sangre
17.
J Am Soc Nephrol ; 31(5): 1009-1023, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32245797

RESUMEN

BACKGROUND: Water and solute transport across epithelia can occur via the transcellular or paracellular pathways. Tight junctions play a key role in mediating paracellular ion reabsorption in the kidney. In the renal collecting duct, which is a typical absorptive tight epithelium, coordination between transcellular sodium reabsorption and paracellular permeability may prevent the backflow of reabsorbed sodium to the tubular lumen along a steep electrochemical gradient. METHODS: To investigate whether transcellular sodium transport controls tight-junction composition and paracellular permeability via modulating expression of the transmembrane protein claudin-8, we used cultured mouse cortical collecting duct cells to see how overexpression or silencing of epithelial sodium channel (ENaC) subunits and claudin-8 affect paracellular permeability. We also used conditional kidney tubule-specific knockout mice lacking ENaC subunits to assess the ENaC's effect on claudin-8 expression. RESULTS: Overexpression or silencing of the ENaC γ-subunit was associated with parallel and specific changes in claudin-8 abundance. Increased claudin-8 abundance was associated with a reduction in paracellular permeability to sodium, whereas decreased claudin-8 abundance was associated with the opposite effect. Claudin-8 overexpression and silencing reproduced these functional effects on paracellular ion permeability. Conditional kidney tubule-specific ENaC γ-subunit knockout mice displayed decreased claudin-8 expression, confirming the cell culture experiments' findings. Importantly, ENaC ß-subunit or α-subunit silencing or kidney tubule-specific ß-ENaC or α-ENaC knockout mice did not alter claudin-8 abundance. CONCLUSIONS: Our data reveal the specific coupling between ENaC γ-subunit and claudin-8 expression. This coupling may play an important role in preventing the backflow of reabsorbed solutes and water to the tubular lumen, as well as in coupling paracellular and transcellular sodium permeability.


Asunto(s)
Claudinas/metabolismo , Canales Epiteliales de Sodio/metabolismo , Regulación de la Expresión Génica , Túbulos Renales Colectores/metabolismo , Sodio/metabolismo , Amilorida/análogos & derivados , Amilorida/farmacología , Animales , Transporte Biológico , Células Cultivadas , Cloruros/metabolismo , Claudinas/deficiencia , Claudinas/genética , Canales Epiteliales de Sodio/deficiencia , Canales Epiteliales de Sodio/genética , Silenciador del Gen , Transporte Iónico , Ratones , Ratones Noqueados , ARN Mensajero/biosíntesis , Proteínas Recombinantes/metabolismo , Transducción Genética
18.
Am J Physiol Regul Integr Comp Physiol ; 318(2): R320-R328, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31913688

RESUMEN

The modifications of the hemodynamic system and hydromineral metabolism are physiological features characterizing a normal gestation. Thus, the ability to expand plasma volume without increasing the level of blood pressure is necessary for the correct perfusion of the placenta. The kidney is essential in this adaptation by reabsorbing avidly sodium and fluid. In this study, we observed that the H,K-ATPase type 2 (HKA2), an ion pump expressed in kidney and colon and already involved in the control of the K+ balance during gestation, is also required for the correct plasma volume expansion and to maintain normal blood pressure. Indeed, compared with WT pregnant mice that exhibit a 1.6-fold increase of their plasma volume, pregnant HKA2-null mice (HKA2KO) only modestly expand their extracellular volume (×1.2). The renal expression of the epithelial Na channel (ENaC) α- and γ-subunits and that of the pendrin are stimulated in gravid WT mice, whereas the Na/Cl- cotransporter (NCC) expression is downregulated. These modifications are all blunted in HKA2KO mice. This impeded renal adaptation to gestation is accompanied by the development of hypotension in the pregnant HKA2KO mice. Altogether, our results showed that the absence of the HKA2 during gestation leads to an "underfilled" situation and has established this transporter as a key player of the renal control of salt and potassium metabolism during gestation.


Asunto(s)
Presión Sanguínea , ATPasa Intercambiadora de Hidrógeno-Potásio/metabolismo , Riñón/enzimología , Volumen Plasmático , Potasio/metabolismo , Sodio/metabolismo , Animales , Acuaporina 2/metabolismo , Colon/enzimología , Canales Epiteliales de Sodio/genética , Canales Epiteliales de Sodio/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Edad Gestacional , ATPasa Intercambiadora de Hidrógeno-Potásio/deficiencia , ATPasa Intercambiadora de Hidrógeno-Potásio/genética , Homeostasis , Ratones Endogámicos C57BL , Ratones Noqueados , Embarazo , Miembro 3 de la Familia de Transportadores de Soluto 12/genética , Miembro 3 de la Familia de Transportadores de Soluto 12/metabolismo , Transportadores de Sulfato/genética , Transportadores de Sulfato/metabolismo
19.
Nephrol Dial Transplant ; 35(11): 1901-1908, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31369102

RESUMEN

BACKGROUND: In rodents, the stimulation of adrenal progesterone is necessary for renal adaptation under potassium depletion. Here, we sought to determine the role of progesterone in adrenal adaptation in potassium-depleted healthy human volunteers and compared our findings with data collected in patients with Gitelman syndrome (GS), a salt-losing tubulopathy. METHODS: Twelve healthy young men were given a potassium-depleted diet for 7 days at a tertiary referral medical centre (NCT02297048). We measured by liquid chromatography coupled to tandem mass spectroscopy plasma steroid concentrations at Days 0 and 7 before and 30 min after treatment with tetracosactide. We compared these data with data collected in 10 GS patients submitted to tetracosactide test. RESULTS: The potassium-depleted diet decreased plasma potassium in healthy subjects by 0.3 ± 0.1 mmol/L, decreased plasma aldosterone concentration by 50% (P = 0.0332) and increased plasma 17-hydroxypregnenolone concentration by 45% (P = 0.0232) without affecting other steroids. CYP17 activity, as assessed by 17-hydroxypregnenolone/pregnenolone ratio, increased by 60% (P = 0.0389). As compared with healthy subjects, GS patients had 3-fold higher plasma concentrations of aldosterone, 11-deoxycortisol (+30%) and delta 4-androstenedione (+14%). Their post-tetracosactide progesterone concentration was 2-fold higher than that of healthy subjects and better correlated to plasma potassium than to plasma renin. CONCLUSION: The increase in 17-hydroxypregnenolone concentration after mild potassium depletion in otherwise healthy human subjects suggests that 17 hydroxylation of pregnenolone prevents the increase in progesterone observed in potassium-depleted mice. The unexpected over-response of non-mineralocorticoid steroids to tetracosactide in GS subjects suggests that the adrenal system not only adapts to sodium depletion but may also respond to hypokalaemia.


Asunto(s)
Glándulas Suprarrenales/fisiología , Síndrome de Gitelman/fisiopatología , Potasio/metabolismo , Progesterona/sangre , Adolescente , Adulto , Anciano , Aldosterona/sangre , Animales , Estudios de Casos y Controles , Cromatografía Liquida/métodos , Femenino , Síndrome de Gitelman/sangre , Humanos , Masculino , Ratones , Persona de Mediana Edad , Renina/sangre , Esteroides/sangre , Espectrometría de Masas en Tándem/métodos , Adulto Joven
20.
Am J Physiol Renal Physiol ; 318(2): F422-F442, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31841389

RESUMEN

The thick ascending limb of the loop of Henle (TAL) is the first segment of the distal nephron, extending through the whole outer medulla and cortex, two regions with different composition of the peritubular environment. The TAL plays a critical role in the control of NaCl, water, acid, and divalent cation homeostasis, as illustrated by the consequences of the various monogenic diseases that affect the TAL. It delivers tubular fluid to the distal convoluted tubule and thereby affects the function of the downstream tubular segments. The TAL is commonly considered as a whole. However, many structural and functional differences exist between its medullary and cortical parts. The present review summarizes the available data regarding the similarities and differences between the medullary and cortical parts of the TAL. Both subsegments reabsorb NaCl and have high Na+-K+-ATPase activity and negligible water permeability; however, they express distinct isoforms of the Na+-K+-2Cl- cotransporter at the apical membrane. Ammonia and bicarbonate are mostly reabsorbed in the medullary TAL, whereas Ca2+ and Mg2+ are mostly reabsorbed in the cortical TAL. The peptidic hormone receptors controlling transport in the TAL are not homogeneously expressed along the cortical and medullary TAL. Besides this axial heterogeneity, structural and functional differences are also apparent between species, which underscores the link between properties and role of the TAL under various environments.


Asunto(s)
Corteza Renal/metabolismo , Médula Renal/metabolismo , Asa de la Nefrona/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Reabsorción Renal , Equilibrio Hidroelectrolítico , Adaptación Fisiológica , Animales , Evolución Molecular , Humanos , Corteza Renal/anatomía & histología , Médula Renal/anatomía & histología , Asa de la Nefrona/anatomía & histología , Proteínas de Transporte de Membrana/genética , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...