Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Circ Heart Fail ; 14(1): e006979, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33464950

RESUMEN

BACKGROUND: Chronic pressure overload predisposes to heart failure, but the pathogenic role of microvascular endothelial cells (MiVEC) remains unknown. We characterized transcriptional, metabolic, and functional adaptation of cardiac MiVEC to pressure overload in mice and patients with aortic stenosis (AS). METHODS: In Tie2-Gfp mice subjected to transverse aortic constriction or sham surgery, we performed RNA sequencing of isolated cardiac Gfp+-MiVEC and validated the signature in freshly isolated MiVEC from left ventricle outflow tract and right atrium of patients with AS. We next compared their angiogenic and metabolic profiles and finally correlated molecular and pathological signatures with clinical phenotypes of 42 patients with AS (50% women). RESULTS: In mice, transverse aortic constriction induced progressive systolic dysfunction, fibrosis, and reduced microvascular density. After 10 weeks, 25 genes predominantly involved in matrix-regulation were >2-fold upregulated in isolated MiVEC. Increased transcript levels of Cartilage Intermediate Layer Protein (Cilp), Thrombospondin-4, Adamtsl-2, and Collagen1a1 were confirmed by quantitative reverse transcription polymerase chain reaction and recapitulated in left ventricle outflow tract-derived MiVEC of AS (P<0.05 versus right atrium-MiVEC). Fatty acid oxidation increased >2-fold in left ventricle outflow tract-MiVEC, proline content by 130% (median, IQR, 58%-474%; P=0.008) and procollagen secretion by 85% (mean [95% CI, 16%-154%]; P<0.05 versus right atrium-MiVEC for all). The altered transcriptome in left ventricle outflow tract-MiVEC was associated with impaired 2-dimensional-vascular network formation and 3-dimensional-spheroid sprouting (P<0.05 versus right atrium-MiVEC), profibrotic ultrastructural changes, and impaired diastolic left ventricle function, capillary density and functional status, especially in female AS. CONCLUSIONS: Pressure overload induces major transcriptional and metabolic adaptations in cardiac MiVEC resulting in excess interstitial fibrosis and impaired angiogenesis. Molecular rewiring of MiVEC is worse in women, compromises functional status, and identifies novel targets for intervention.


Asunto(s)
Estenosis de la Válvula Aórtica/genética , Vasos Coronarios/metabolismo , Células Endoteliales/metabolismo , Atrios Cardíacos/metabolismo , Ventrículos Cardíacos/metabolismo , Microvasos/metabolismo , Proteínas ADAMTS/genética , Anciano , Animales , Aorta , Estenosis de la Válvula Aórtica/metabolismo , Estenosis de la Válvula Aórtica/patología , Estenosis de la Válvula Aórtica/cirugía , Colágeno Tipo I/genética , Cadena alfa 1 del Colágeno Tipo I , Constricción Patológica , Vasos Coronarios/patología , Modelos Animales de Enfermedad , Células Endoteliales/patología , Proteínas de la Matriz Extracelular/genética , Ácidos Grasos/metabolismo , Femenino , Perfilación de la Expresión Génica , Atrios Cardíacos/patología , Implantación de Prótesis de Válvulas Cardíacas , Ventrículos Cardíacos/patología , Humanos , Masculino , Ratones , Ratones Transgénicos , Densidad Microvascular , Microvasos/patología , Procolágeno/metabolismo , Prolina/metabolismo , Pirofosfatasas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ARN , Trombospondinas/genética
3.
Sci Rep ; 7: 46152, 2017 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-28393890

RESUMEN

Intercellular adhesion plays a major role in tissue development and homeostasis. Yet, technologies to measure mature cell-cell contacts are not available. We introduce a methodology based on fluidic probe force microscopy to assess cell-cell adhesion forces after formation of mature intercellular contacts in cell monolayers. With this method we quantify that L929 fibroblasts exhibit negligible cell-cell adhesion in monolayers whereas human endothelial cells from the umbilical artery (HUAECs) exert strong intercellular adhesion forces per cell. We use a new in vitro model based on the overexpression of Muscle Segment Homeobox 1 (MSX1) to induce Endothelial-to-Mesenchymal Transition (EndMT), a process involved in cardiovascular development and disease. We reveal how intercellular adhesion forces in monolayer decrease significantly at an early stage of EndMT and we show that cells undergo stiffening and flattening at this stage. This new biomechanical insight complements and expands the established standard biomolecular analyses. Our study thus introduces a novel tool for the assessment of mature intercellular adhesion forces in a physiological setting that will be of relevance to biological processes in developmental biology, tissue regeneration and diseases like cancer and fibrosis.


Asunto(s)
Comunicación Celular , Fenómenos Biomecánicos , Adhesión Celular , Forma de la Célula , Citoesqueleto/metabolismo , Células Endoteliales/citología , Células HEK293 , Humanos , Factor de Transcripción MSX1/metabolismo , Arterias Umbilicales/citología , Regulación hacia Arriba
4.
J Cell Biol ; 210(7): 1239-56, 2015 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-26391659

RESUMEN

Collateral remodeling is critical for blood flow restoration in peripheral arterial disease and is triggered by increasing fluid shear stress in preexisting collateral arteries. So far, no arterial-specific mediators of this mechanotransduction response have been identified. We show that muscle segment homeobox 1 (MSX1) acts exclusively in collateral arterial endothelium to transduce the extrinsic shear stimulus into an arteriogenic remodeling response. MSX1 was specifically up-regulated in remodeling collateral arteries. MSX1 induction in collateral endothelial cells (ECs) was shear stress driven and downstream of canonical bone morphogenetic protein-SMAD signaling. Flow recovery and collateral remodeling were significantly blunted in EC-specific Msx1/2 knockout mice. Mechanistically, MSX1 linked the arterial shear stimulus to arteriogenic remodeling by activating the endothelial but not medial layer to a proinflammatory state because EC but not smooth muscle cellMsx1/2 knockout mice had reduced leukocyte recruitment to remodeling collateral arteries. This reduced leukocyte infiltration in EC Msx1/2 knockout mice originated from decreased levels of intercellular adhesion molecule 1 (ICAM1)/vascular cell adhesion molecule 1 (VCAM1), whose expression was also in vitro driven by promoter binding of MSX1.


Asunto(s)
Endotelio Vascular/metabolismo , Hemodinámica/fisiología , Factor de Transcripción MSX1/metabolismo , Músculo Liso Vascular/metabolismo , Transducción de Señal/fisiología , Remodelación Vascular/fisiología , Animales , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Endotelio Vascular/citología , Molécula 1 de Adhesión Intercelular/genética , Molécula 1 de Adhesión Intercelular/metabolismo , Factor de Transcripción MSX1/genética , Ratones , Ratones Noqueados , Músculo Liso Vascular/citología , Proteínas Smad/genética , Proteínas Smad/metabolismo , Molécula 1 de Adhesión Celular Vascular/genética , Molécula 1 de Adhesión Celular Vascular/metabolismo
5.
Cardiovasc Res ; 108(1): 124-38, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26156496

RESUMEN

AIMS: Platelet endothelial aggregation receptor-1 (PEAR1) is a cell membrane protein, expressed on platelets and endothelial cells (ECs). PEAR1 sustains αIIbß3 activation in aggregating platelets and attenuates megakaryopoiesis via controlling the degree of Akt phosphorylation. Its role in EC biology is unknown. The aim of this study was to determine the expression of PEAR1 in the human endothelium of various tissues and to investigate its role in ECs in vitro and in angiogenesis, using Pear1(-/-) mice. METHODS AND RESULTS: PEAR1 is present on the membrane and on filo- and lamellipodia of human cultured ECs, and its expression coincides with CD31 in various tissues. PEAR1 expression is variable in ECs of different origin. Lentiviral knockdown of PEAR1 in cultured ECs doubled EC proliferation and significantly stimulated EC migration, in turn enhancing in vitro tube formation on matrigel through the Akt/PTEN-dependent p21/CDC2 pathway. Even when physiological blood vessel formation was unaffected in Pear1(-/-) mice, neoangiogenesis in these mice was significantly increased both in a hind limb ischaemia ligation model [4.7-fold increase in capillary density in the ligated limb of Pear1(-/-) mice compared with ligated limbs in wild-type (WT) mice] and in a skin wound-healing model, resulting in a two-fold faster wound closure in Pear1(-/-) mice compared with WT littermates. CONCLUSION: We established an inverse correlation between endothelial PEAR1 expression and vascular assembly both in vitro and in vivo. These findings identify PEAR1 as a novel modifier of neoangiogenesis.


Asunto(s)
Neovascularización Fisiológica/fisiología , Receptores de Superficie Celular/fisiología , Animales , Proteína Quinasa CDC2 , Movimiento Celular , Proliferación Celular , Células Cultivadas , Quinasas Ciclina-Dependientes/fisiología , Células Endoteliales/fisiología , Humanos , Isquemia/fisiopatología , Ratones , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-akt/fisiología , Receptores de Superficie Celular/análisis , Receptores de Superficie Celular/genética , Cicatrización de Heridas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...