Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biomedicines ; 10(9)2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36140173

RESUMEN

Amphipathic peptides can act as antibiotics due to membrane permeabilization. KL peptides with the repetitive sequence [Lys-Leu]n-NH2 form amphipathic ß-strands in the presence of lipid bilayers. As they are known to kill bacteria in a peculiar length-dependent manner, we suggest here several different functional models, all of which seem plausible, including a carpet mechanism, a ß-barrel pore, a toroidal wormhole, and a ß-helix. To resolve their genuine mechanism, the activity of KL peptides with lengths from 6-26 amino acids (plus some inverted LK analogues) was systematically tested against bacteria and erythrocytes. Vesicle leakage assays served to correlate bilayer thickness and peptide length and to examine the role of membrane curvature and putative pore diameter. KL peptides with 10-12 amino acids showed the best therapeutic potential, i.e., high antimicrobial activity and low hemolytic side effects. Mechanistically, this particular window of an optimum ß-strand length around 4 nm (11 amino acids × 3.7 Å) would match the typical thickness of a lipid bilayer, implying the formation of a transmembrane pore. Solid-state 15N- and 19F-NMR structure analysis, however, showed that the KL backbone lies flat on the membrane surface under all conditions. We can thus refute any of the pore models and conclude that the KL peptides rather disrupt membranes by a carpet mechanism. The intriguing length-dependent optimum in activity can be fully explained by two counteracting effects, i.e., membrane binding versus amyloid formation. Very short KL peptides are inactive, because they are unable to bind to the lipid bilayer as flexible ß-strands, whereas very long peptides are inactive due to vigorous pre-aggregation into ß-sheets in solution.

2.
Sci Rep ; 10(1): 12300, 2020 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-32704013

RESUMEN

In this study, we investigate how the length of amphiphilic ß-sheet forming peptides affects their interaction with membranes. Four polycationic model peptides with lengths from 6 to 18 amino acids were constructed from simple Lys-Leu repeats, giving [KL]n=3,5,7,9. We found that (1) they exhibit a pronounced antimicrobial activity with an intriguing length dependent maximum for [KL]5 with 10 amino acids; (2) their hemolytic effect, on the other hand, increases steadily with peptide length. CD analysis (3) and TEM (4) show that all peptides-except for the short [KL]3-aggregate into amyloid-like fibrils in the presence of phosphate ions, which in turn has a critical effect on the results in (1) and (2). In fact, (5) vesicle leakage reveals an intrinsic membrane-perturbing activity (at constant peptide mass) of [KL]5 > [KL]9 > [KL]7 in phosphate buffer, which changes to [KL]5 ≈ [KL]7 ≈ [KL]9 in PIPES. A specific interaction with phosphate ions thus explains the subtle balance between two counteracting effects: phosphate-induced unproductive pre-aggregation in solution versus monomeric membrane binding and vigorous lipid perturbation due to self-assembly of the bound peptides within the bilayer. This knowledge can now be used to control and optimize the peptides in further applications.


Asunto(s)
Péptidos/química , Péptidos/metabolismo , Fosfatos/metabolismo , Agregado de Proteínas , Antiinfecciosos , Membrana Celular/química , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Hemólisis , Pruebas de Sensibilidad Microbiana , Péptidos/farmacología , Agregación Patológica de Proteínas , Unión Proteica , Análisis Espectral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...