Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nature ; 628(8009): 835-843, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38600381

RESUMEN

Severe influenza A virus (IAV) infections can result in hyper-inflammation, lung injury and acute respiratory distress syndrome1-5 (ARDS), for which there are no effective pharmacological therapies. Necroptosis is an attractive entry point for therapeutic intervention in ARDS and related inflammatory conditions because it drives pathogenic lung inflammation and lethality during severe IAV infection6-8 and can potentially be targeted by receptor interacting protein kinase 3 (RIPK3) inhibitors. Here we show that a newly developed RIPK3 inhibitor, UH15-38, potently and selectively blocked IAV-triggered necroptosis in alveolar epithelial cells in vivo. UH15-38 ameliorated lung inflammation and prevented mortality following infection with laboratory-adapted and pandemic strains of IAV, without compromising antiviral adaptive immune responses or impeding viral clearance. UH15-38 displayed robust therapeutic efficacy even when administered late in the course of infection, suggesting that RIPK3 blockade may provide clinical benefit in patients with IAV-driven ARDS and other hyper-inflammatory pathologies.


Asunto(s)
Lesión Pulmonar , Necroptosis , Infecciones por Orthomyxoviridae , Inhibidores de Proteínas Quinasas , Proteína Serina-Treonina Quinasas de Interacción con Receptores , Animales , Femenino , Humanos , Masculino , Ratones , Células Epiteliales Alveolares/patología , Células Epiteliales Alveolares/efectos de los fármacos , Células Epiteliales Alveolares/virología , Células Epiteliales Alveolares/metabolismo , Virus de la Influenza A/clasificación , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza A/inmunología , Virus de la Influenza A/patogenicidad , Lesión Pulmonar/complicaciones , Lesión Pulmonar/patología , Lesión Pulmonar/prevención & control , Lesión Pulmonar/virología , Ratones Endogámicos C57BL , Necroptosis/efectos de los fármacos , Infecciones por Orthomyxoviridae/complicaciones , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/mortalidad , Infecciones por Orthomyxoviridae/virología , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/antagonistas & inhibidores , Síndrome de Dificultad Respiratoria/complicaciones , Síndrome de Dificultad Respiratoria/patología , Síndrome de Dificultad Respiratoria/prevención & control , Síndrome de Dificultad Respiratoria/virología
2.
Cell Rep Med ; 5(3): 101469, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38508137

RESUMEN

Fibrolamellar carcinoma (FLC) is a liver tumor with a high mortality burden and few treatment options. A promising therapeutic vulnerability in FLC is its driver mutation, a conserved DNAJB1-PRKACA gene fusion that could be an ideal target neoantigen for immunotherapy. In this study, we aim to define endogenous CD8 T cell responses to this fusion in FLC patients and evaluate fusion-specific T cell receptors (TCRs) for use in cellular immunotherapies. We observe that fusion-specific CD8 T cells are rare and that FLC patient TCR repertoires lack large clusters of related TCR sequences characteristic of potent antigen-specific responses, potentially explaining why endogenous immune responses are insufficient to clear FLC tumors. Nevertheless, we define two functional fusion-specific TCRs, one of which has strong anti-tumor activity in vivo. Together, our results provide insights into the fragmented nature of neoantigen-specific repertoires in humans and indicate routes for clinical development of successful immunotherapies for FLC.


Asunto(s)
Carcinoma Hepatocelular , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/patología , Receptores de Antígenos de Linfocitos T/genética , Linfocitos T/patología , Tratamiento Basado en Trasplante de Células y Tejidos , Proteínas del Choque Térmico HSP40/genética , Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/genética
3.
Cancer Res Commun ; 3(12): 2430-2446, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37971169

RESUMEN

Understanding the intricate dynamics between adoptively transferred immune cells and the brain tumor immune microenvironment (TIME) is crucial for the development of effective T cell-based immunotherapies. In this study, we investigated the influence of the TIME and chimeric antigen receptor (CAR) design on the anti-glioma activity of B7-H3-specific CAR T-cells. Using an immunocompetent glioma model, we evaluated a panel of seven fully murine B7-H3 CARs with variations in transmembrane, costimulatory, and activation domains. We then investigated changes in the TIME following CAR T-cell therapy using high-dimensional flow cytometry and single-cell RNA sequencing. Our results show that five out of six B7-H3 CARs with single costimulatory domains demonstrated robust functionality in vitro. However, these CARs had significantly varied levels of antitumor activity in vivo. To enhance therapeutic effectiveness and persistence, we incorporated 41BB and CD28 costimulation through transgenic expression of 41BBL on CD28-based CAR T-cells. This CAR design was associated with significantly improved anti-glioma efficacy in vitro but did not result in similar improvements in vivo. Analysis of the TIME revealed that CAR T-cell therapy influenced the composition of the TIME, with the recruitment and activation of distinct macrophage and endogenous T-cell subsets crucial for successful antitumor responses. Indeed, complete brain macrophage depletion using a CSF1R inhibitor abrogated CAR T-cell antitumor activity. In sum, our study highlights the critical role of CAR design and its modulation of the TIME in mediating the efficacy of adoptive immunotherapy for high-grade glioma. SIGNIFICANCE: CAR T-cell immunotherapies hold great potential for treating brain cancers; however, they are hindered by a challenging immune environment that dampens their effectiveness. In this study, we show that the CAR design influences the makeup of the immune environment in brain tumors, underscoring the need to target specific immune components to improve CAR T-cell performance, and highlighting the significance of using models with functional immune systems to optimize this therapy.


Asunto(s)
Neoplasias Encefálicas , Glioma , Receptores Quiméricos de Antígenos , Ratones , Animales , Receptores Quiméricos de Antígenos/genética , Linfocitos T , Macrófagos Asociados a Tumores/metabolismo , Antígenos CD28/genética , Glioma/terapia , Neoplasias Encefálicas/terapia , Encéfalo/metabolismo , Microambiente Tumoral
4.
Nature ; 623(7987): 608-615, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37938768

RESUMEN

Cell therapies have yielded durable clinical benefits for patients with cancer, but the risks associated with the development of therapies from manipulated human cells are understudied. For example, we lack a comprehensive understanding of the mechanisms of toxicities observed in patients receiving T cell therapies, including recent reports of encephalitis caused by reactivation of human herpesvirus 6 (HHV-6)1. Here, through petabase-scale viral genomics mining, we examine the landscape of human latent viral reactivation and demonstrate that HHV-6B can become reactivated in cultures of human CD4+ T cells. Using single-cell sequencing, we identify a rare population of HHV-6 'super-expressors' (about 1 in 300-10,000 cells) that possess high viral transcriptional activity, among research-grade allogeneic chimeric antigen receptor (CAR) T cells. By analysing single-cell sequencing data from patients receiving cell therapy products that are approved by the US Food and Drug Administration2 or are in clinical studies3-5, we identify the presence of HHV-6-super-expressor CAR T cells in patients in vivo. Together, the findings of our study demonstrate the utility of comprehensive genomics analyses in implicating cell therapy products as a potential source contributing to the lytic HHV-6 infection that has been reported in clinical trials1,6-8 and may influence the design and production of autologous and allogeneic cell therapies.


Asunto(s)
Linfocitos T CD4-Positivos , Herpesvirus Humano 6 , Inmunoterapia Adoptiva , Receptores Quiméricos de Antígenos , Activación Viral , Latencia del Virus , Humanos , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/virología , Ensayos Clínicos como Asunto , Regulación Viral de la Expresión Génica , Genómica , Herpesvirus Humano 6/genética , Herpesvirus Humano 6/aislamiento & purificación , Herpesvirus Humano 6/fisiología , Inmunoterapia Adoptiva/efectos adversos , Inmunoterapia Adoptiva/métodos , Encefalitis Infecciosa/complicaciones , Encefalitis Infecciosa/virología , Receptores Quiméricos de Antígenos/inmunología , Infecciones por Roseolovirus/complicaciones , Infecciones por Roseolovirus/virología , Análisis de Expresión Génica de una Sola Célula , Carga Viral
5.
Nat Immunol ; 24(11): 1890-1907, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37749325

RESUMEN

CD8+ T cells provide robust antiviral immunity, but how epitope-specific T cells evolve across the human lifespan is unclear. Here we defined CD8+ T cell immunity directed at the prominent influenza epitope HLA-A*02:01-M158-66 (A2/M158) across four age groups at phenotypic, transcriptomic, clonal and functional levels. We identify a linear differentiation trajectory from newborns to children then adults, followed by divergence and a clonal reset in older adults. Gene profiles in older adults closely resemble those of newborns and children, despite being clonally distinct. Only child-derived and adult-derived A2/M158+CD8+ T cells had the potential to differentiate into highly cytotoxic epitope-specific CD8+ T cells, which was linked to highly functional public T cell receptor (TCR)αß signatures. Suboptimal TCRαß signatures in older adults led to less proliferation, polyfunctionality, avidity and recognition of peptide mutants, although displayed no signs of exhaustion. These data suggest that priming T cells at different stages of life might greatly affect CD8+ T cell responses toward viral infections.


Asunto(s)
Linfocitos T CD8-positivos , Longevidad , Recién Nacido , Humanos , Anciano , Epítopos de Linfocito T/genética , Linfocitos T Citotóxicos , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Receptores de Antígenos de Linfocitos T/genética
6.
bioRxiv ; 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37693531

RESUMEN

We profiled blood and draining lymph node (LN) samples from human volunteers after influenza vaccination over two years to define evolution in the T follicular helper cell (TFH) response. We show LN TFH cells expanded in a clonal-manner during the first two weeks after vaccination and persisted within the LN for up to six months. LN and circulating TFH (cTFH) clonotypes overlapped but had distinct kinetics. LN TFH cell phenotypes were heterogeneous and mutable, first differentiating into pre-TFH during the month after vaccination before maturing into GC and IL-10+ TFH cells. TFH expansion, upregulation of glucose metabolism, and redifferentiation into GC TFH cells occurred with faster kinetics after re-vaccination in the second year. We identified several influenza-specific TFH clonal lineages, including multiple responses targeting internal influenza proteins, and show each TFH state is attainable within a lineage. This study demonstrates that human TFH cells form a durable and dynamic multi-tissue network.

7.
bioRxiv ; 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37693589

RESUMEN

Integrins are essential surface receptors that sense extracellular changes to initiate various intracellular signaling cascades. The rapid activation of the epithelial-intrinsic ß6 integrin during influenza A virus (IAV) infection has been linked to innate immune impairments. Yet, how ß6 regulates epithelial immunity remains undefined. Here, we identify the role of ß6 in mediating the Toll-like receptor 7 (TLR7) through the regulation of intracellular trafficking. We demonstrate that deletion of the ß6 integrin in lung epithelial cells significantly enhances the TLR7-mediated activation of the type I interferon (IFN) response during homeostasis and respiratory infection. IAV-induced ß6 facilitates TLR7 trafficking to lysosome-associated membrane protein (LAMP2a) components, leading to a reduction in endosomal compartments and associated TLR7 signaling. Our findings reveal an unappreciated role of ß6-induced autophagy in influencing epithelial immune responses during influenza virus infection.

8.
J Virol ; 97(9): e0102523, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37668367

RESUMEN

Human astrovirus is a positive-sense, single-stranded RNA virus. Astrovirus infection causes gastrointestinal symptoms and can lead to encephalitis in immunocompromised patients. Positive-strand RNA viruses typically utilize host intracellular membranes to form replication organelles, which are potential antiviral targets. Many of these replication organelles are double-membrane vesicles (DMVs). Here, we show that astrovirus infection leads to an increase in DMV formation through a replication-dependent mechanism that requires some early components of the autophagy machinery. Results indicate that the upstream class III phosphatidylinositol 3-kinase (PI3K) complex, but not LC3 conjugation machinery, is utilized in DMV formation. Both chemical and genetic inhibition of the PI3K complex lead to significant reduction in DMVs, as well as viral replication. Elucidating the role of autophagy machinery in DMV formation during astrovirus infection reveals a potential target for therapeutic intervention for immunocompromised patients. IMPORTANCE These studies provide critical new evidence that astrovirus replication requires formation of double-membrane vesicles, which utilize class III phosphatidylinositol 3-kinase (PI3K), but not LC3 conjugation autophagy machinery, for biogenesis. These results are consistent with replication mechanisms for other positive-sense RNA viruses suggesting that targeting PI3K could be a promising therapeutic option for not only astrovirus, but other positive-sense RNA virus infections.


Asunto(s)
Mamastrovirus , Fosfatidilinositol 3-Quinasa , Replicación Viral , Humanos , Autofagia , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Membranas Intracelulares/metabolismo , Orgánulos , Fosfatidilinositol 3-Quinasa/metabolismo , Virus ARN , Mamastrovirus/fisiología , Transducción de Señal
9.
Front Immunol ; 14: 1220028, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37533854

RESUMEN

Background: Influenza virus is responsible for a large global burden of disease, especially in children. Multiple Organ Dysfunction Syndrome (MODS) is a life-threatening and fatal complication of severe influenza infection. Methods: We measured RNA expression of 469 biologically plausible candidate genes in children admitted to North American pediatric intensive care units with severe influenza virus infection with and without MODS. Whole blood samples from 191 influenza-infected children (median age 6.4 years, IQR: 2.2, 11) were collected a median of 27 hours following admission; for 45 children a second blood sample was collected approximately seven days later. Extracted RNA was hybridized to NanoString mRNA probes, counts normalized, and analyzed using linear models controlling for age and bacterial co-infections (FDR q<0.05). Results: Comparing pediatric samples collected near admission, children with Prolonged MODS for ≥7 days (n=38; 9 deaths) had significant upregulation of nine mRNA transcripts associated with neutrophil degranulation (RETN, TCN1, OLFM4, MMP8, LCN2, BPI, LTF, S100A12, GUSB) compared to those who recovered more rapidly from MODS (n=27). These neutrophil transcripts present in early samples predicted Prolonged MODS or death when compared to patients who recovered, however in paired longitudinal samples, they were not differentially expressed over time. Instead, five genes involved in protein metabolism and/or adaptive immunity signaling pathways (RPL3, MRPL3, HLA-DMB, EEF1G, CD8A) were associated with MODS recovery within a week. Conclusion: Thus, early increased expression of neutrophil degranulation genes indicated worse clinical outcomes in children with influenza infection, consistent with reports in adult cohorts with influenza, sepsis, and acute respiratory distress syndrome.


Asunto(s)
Infecciones Bacterianas , Gripe Humana , Humanos , Insuficiencia Multiorgánica/genética , Gripe Humana/genética , Gripe Humana/complicaciones , Transcriptoma , Fenotipo , Hospitalización , Infecciones Bacterianas/complicaciones
10.
bioRxiv ; 2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37461683

RESUMEN

Previous studies have identified cytokines associated with respiratory virus infection illness outcome. However, few studies have included comprehensive cytokine panels, longitudinal analyses, and/or simultaneous assessment across the severity spectrum. This, coupled with subjective definitions of cytokine storm syndrome (CSS), have contributed to inconsistent findings of cytokine signatures, particularly with COVID severity. Here, we measured 38 plasma cytokines and compared profiles in healthy, SARS-CoV-2 infected, and multisystem inflammatory syndrome in children (MIS-C) patients (n = 169). Infected patients spanned the severity spectrum and were classified as Asymptomatic, Mild, Moderate or Severe. Our results showed acute cytokine profiles and longitudinal dynamics of IL1Ra, IL10, MIP1b, and IP10 can differentiate COVID severity groups. Only 4% of acutely infected patients exhibited hypercytokinemia. Of these subjects, 3 were Mild, 3 Moderate, and 1 Severe, highlighting the lack of association between CSS and COVID severity. Additionally, we identified IL1Ra and TNFa as potential biomarkers for patients at high risk for long COVID. Lastly, we compare hypercytokinemia profiles across COVID and influenza patients and show distinct elevated cytokine signatures, wherein influenza induces the most elevated cytokine profile. Together, these results identify key analytes that, if obtained at early time points, can predict COVID illness outcome and/or risk of complications, and provide novel insight for improving the conceptual framework of hypercytokinemia, wherein CSS is a subgroup that requires concomitant severe clinical manifestations, and including a list of cytokines that can distinguish between subtypes of hypercytokinemia.

11.
Mucosal Immunol ; 16(4): 551-562, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37290501

RESUMEN

Astroviruses cause a spectrum of diseases spanning asymptomatic infections to severe diarrhea, but little is understood about their pathogenesis. We previously determined that small intestinal goblet cells were the main cell type infected by murine astrovirus-1. Here, we focused on the host immune response to infection and inadvertently discovered a role for indoleamine 2,3-dioxygenase 1 (Ido1), a host tryptophan catabolizing enzyme, in the cellular tropism of murine and human astroviruses. We identified that Ido1 expression was highly enriched among infected goblet cells, and spatially corresponded to the zonation of infection. Because Ido1 can act as a negative regulator of inflammation, we hypothesized it could dampen host antiviral responses. Despite robust interferon signaling in goblet cells, as well as tuft cell and enterocyte bystanders, we observed delayed cytokine induction and suppressed levels of fecal lipocalin-2. Although we found Ido-/- animals were more resistant to infection, this was not associated with fewer goblet cells nor could it be rescued by knocking out interferon responses, suggesting that IDO1 instead regulates cell permissivity. We characterized IDO1-/- Caco-2 cells and observed significantly reduced human astrovirus-1 infection. Together this study highlights a role for Ido1 in astrovirus infection and epithelial cell maturation.


Asunto(s)
Infecciones por Astroviridae , Indolamina-Pirrol 2,3,-Dioxigenasa , Animales , Humanos , Ratones , Células CACO-2 , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Interferones , Triptófano/metabolismo
12.
Nat Commun ; 14(1): 3870, 2023 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-37391405

RESUMEN

Acute respiratory distress syndrome (ARDS), termed pediatric ARDS (pARDS) in children, is a severe form of acute respiratory failure (ARF). Pathologic immune responses are implicated in pARDS pathogenesis. Here, we present a description of microbial sequencing and single cell gene expression in tracheal aspirates (TAs) obtained longitudinally from infants with ARF. We show reduced interferon stimulated gene (ISG) expression, altered mononuclear phagocyte (MNP) transcriptional programs, and progressive airway neutrophilia associated with unique transcriptional profiles in patients with moderate to severe pARDS compared to those with no or mild pARDS. We additionally show that an innate immune cell product, Folate Receptor 3 (FOLR3), is enriched in moderate or severe pARDS. Our findings demonstrate distinct inflammatory responses in pARDS that are dependent upon etiology and severity and specifically implicate reduced ISG expression, altered macrophage repair-associated transcriptional programs, and accumulation of aged neutrophils in the pathogenesis of moderate to severe pARDS caused by RSV.


Asunto(s)
Síndrome de Dificultad Respiratoria , Transcriptoma , Lactante , Humanos , Niño , Anciano , Transcriptoma/genética , Perfilación de la Expresión Génica , Síndrome de Dificultad Respiratoria/genética , Interferones , Leucocitosis
13.
Res Sq ; 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37333156

RESUMEN

Understanding interactions between adoptively transferred immune cells and the tumor immune microenvironment (TIME) is critical for developing successful T-cell based immunotherapies. Here we investigated the impact of the TIME and chimeric antigen receptor (CAR) design on anti-glioma activity of B7-H3-specific CAR T-cells. We show that five out of six B7-H3 CARs with varying transmembrane, co-stimulatory, and activation domains, exhibit robust functionality in vitro. However, in an immunocompetent glioma model, these CAR T-cells demonstrated significantly varied levels of anti-tumor activity. We used single-cell RNA sequencing to examine the brain TIME after CAR T-cell therapy. We show that the TIME composition was influenced by CAR T-cell treatment. We also found that successful anti-tumor responses were supported by the presence and activity of macrophages and endogenous T-cells. Together, our study demonstrates that efficacy of CAR T-cell therapy in high-grade glioma is dependent on CAR structural design and its capacity to modulate the TIME.

14.
Nat Immunol ; 24(6): 966-978, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37248417

RESUMEN

High-risk groups, including Indigenous people, are at risk of severe COVID-19. Here we found that Australian First Nations peoples elicit effective immune responses to COVID-19 BNT162b2 vaccination, including neutralizing antibodies, receptor-binding domain (RBD) antibodies, SARS-CoV-2 spike-specific B cells, and CD4+ and CD8+ T cells. In First Nations participants, RBD IgG antibody titers were correlated with body mass index and negatively correlated with age. Reduced RBD antibodies, spike-specific B cells and follicular helper T cells were found in vaccinated participants with chronic conditions (diabetes, renal disease) and were strongly associated with altered glycosylation of IgG and increased interleukin-18 levels in the plasma. These immune perturbations were also found in non-Indigenous people with comorbidities, indicating that they were related to comorbidities rather than ethnicity. However, our study is of a great importance to First Nations peoples who have disproportionate rates of chronic comorbidities and provides evidence of robust immune responses after COVID-19 vaccination in Indigenous people.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , Vacuna BNT162 , COVID-19/prevención & control , Linfocitos T CD8-positivos , Australia/epidemiología , SARS-CoV-2 , Inmunoglobulina G , Anticuerpos Neutralizantes , Inmunidad , Anticuerpos Antivirales , Vacunación
15.
bioRxiv ; 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37090568

RESUMEN

Human astrovirus is a positive sense, single stranded RNA virus. Astrovirus infection causes gastrointestinal symptoms and can lead to encephalitis in immunocompromised patients. Positive strand RNA viruses typically utilize host intracellular membranes to form replication organelles, which are potential antiviral targets. Many of these replication organelles are double membrane vesicles (DMVs). Here we show that astrovirus infection leads to an increase in DMV formation, and this process is replication-dependent. Our data suggest that astrovirus infection induces rearrangement of endoplasmic reticulum fragments, which may become the origin for DMV formation. Transcriptional data suggested that formation of DMVs during astrovirus infection requires some early components of the autophagy machinery. Results indicate that the upstream class III phosphatidylinositol 3-kinase (PI3K) complex, but not LC3 conjugation machinery, is utilized in DMV formation. Inhibition of the PI3K complex leads to significant reduction in viral replication and release from cells. Elucidating the role of autophagy machinery in DMV formation during astrovirus infection reveals a potential target for therapeutic intervention for immunocompromised patients. Importance: These studies provide critical new evidence that astrovirus replication requires formation of double membrane vesicles, which utilize class III PI3K, but not LC3 conjugation autophagy machinery for biogenesis. These results are consistent with replication mechanisms for other positive sense RNA viruses. This suggests that targeting PI3K could be a promising therapeutic option for not only astrovirus, but other positive sense RNA virus infections.

16.
mBio ; 14(3): e0051023, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37052506

RESUMEN

Microbial components have a range of direct effects on the fetal brain. However, little is known about the cellular targets and molecular mechanisms that mediate these effects. Neural progenitor cells (NPCs) control the size and architecture of the brain and understanding the mechanisms regulating NPCs is crucial to understanding brain developmental disorders. We identify ventricular radial glia (vRG), the primary NPC, as the target of bacterial cell wall (BCW) generated during the antibiotic treatment of maternal pneumonia. BCW enhanced proliferative potential of vRGs by shortening the cell cycle and increasing self-renewal. Expanded vRGs propagated to increase neuronal output in all cortical layers. Remarkably, Toll-like receptor 2 (TLR2), which recognizes BCW, localized at the base of primary cilia in vRGs and the BCW-TLR2 interaction suppressed ciliogenesis leading to derepression of Hedgehog (HH) signaling and expansion of vRGs. We also show that TLR6 is an essential partner of TLR2 in this process. Surprisingly, TLR6 alone was required to set the number of cortical neurons under healthy conditions. These findings suggest that an endogenous signal from TLRs suppresses cortical expansion during normal development of the neocortex and that BCW antagonizes that signal through the TLR2/cilia/HH signaling axis changing brain structure and function. IMPORTANCE Fetal brain development in early gestation can be impacted by transplacental infection, altered metabolites from the maternal microbiome, or maternal immune activation. It is less well understood how maternal microbial subcomponents that cross the placenta, such as bacterial cell wall (BCW), directly interact with fetal neural progenitors and neurons and affect development. This scenario plays out in the clinic when BCW debris released during antibiotic therapy of maternal infection traffics to the fetal brain. This study identifies the direct interaction of BCW with TLR2/6 present on the primary cilium, the signaling hub on fetal neural progenitor cells (NPCs). NPCs control the size and architecture of the brain and understanding the mechanisms regulating NPCs is crucial to understanding brain developmental disorders. Within a window of vulnerability before the appearance of fetal immune cells, the BCW-TLR2/6 interaction results in the inhibition of ciliogenesis, derepression of Sonic Hedgehog signaling, excess proliferation of neural progenitors, and abnormal cortical architecture. In the first example of TLR signaling linked to Sonic Hedgehog, BCW/TLR2/6 appears to act during fetal brain morphogenesis to play a role in setting the total cell number in the neocortex.


Asunto(s)
Proteínas Hedgehog , Neocórtex , Embarazo , Femenino , Humanos , Proteínas Hedgehog/metabolismo , Neocórtex/metabolismo , Receptor Toll-Like 2/metabolismo , Ligandos , Receptor Toll-Like 6/metabolismo
17.
Cell Rep Med ; 4(4): 101017, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37030296

RESUMEN

Immunocompromised hematology patients are vulnerable to severe COVID-19 and respond poorly to vaccination. Relative deficits in immunity are, however, unclear, especially after 3 vaccine doses. We evaluated immune responses in hematology patients across three COVID-19 vaccination doses. Seropositivity was low after a first dose of BNT162b2 and ChAdOx1 (∼26%), increased to 59%-75% after a second dose, and increased to 85% after a third dose. While prototypical antibody-secreting cells (ASCs) and T follicular helper (Tfh) cell responses were elicited in healthy participants, hematology patients showed prolonged ASCs and skewed Tfh2/17 responses. Importantly, vaccine-induced expansions of spike-specific and peptide-HLA tetramer-specific CD4+/CD8+ T cells, together with their T cell receptor (TCR) repertoires, were robust in hematology patients, irrespective of B cell numbers, and comparable to healthy participants. Vaccinated patients with breakthrough infections developed higher antibody responses, while T cell responses were comparable to healthy groups. COVID-19 vaccination induces robust T cell immunity in hematology patients of varying diseases and treatments irrespective of B cell numbers and antibody response.


Asunto(s)
COVID-19 , Neoplasias Hematológicas , Humanos , Receptores de Antígenos de Linfocitos T alfa-beta , Vacunas contra la COVID-19 , SARS-CoV-2 , Vacuna BNT162 , Linfocitos T CD8-positivos
18.
Cell Rep ; 42(2): 112106, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36773294

RESUMEN

Drak2-deficient (Drak2-/-) mice are resistant to multiple models of autoimmunity yet effectively eliminate pathogens and tumors. Thus, DRAK2 represents a potential target to treat autoimmune diseases. However, the mechanisms by which DRAK2 contributes to autoimmunity, particularly type 1 diabetes (T1D), remain unresolved. Here, we demonstrate that resistance to T1D in non-obese diabetic (NOD) mice is due to the absence of Drak2 in T cells and requires the presence of regulatory T cells (Tregs). Contrary to previous hypotheses, we show that DRAK2 does not limit TCR signaling. Rather, DRAK2 regulates IL-2 signaling by inhibiting STAT5A phosphorylation. We further demonstrate that enhanced sensitivity to IL-2 in the absence of Drak2 augments thymic Treg development. Overall, our data indicate that DRAK2 contributes to autoimmunity in multiple ways by regulating thymic Treg development and by impacting the sensitivity of conventional T cells to Treg-mediated suppression.


Asunto(s)
Enfermedades Autoinmunes , Diabetes Mellitus Tipo 1 , Ratones , Animales , Interleucina-2/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Linfocitos T Reguladores/metabolismo , Ratones Endogámicos NOD
19.
Blood ; 140(26): 2805-2817, 2022 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-36283106

RESUMEN

Myelofibrosis (MF) is a disease associated with high unmet medical needs because allogeneic stem cell transplantation is not an option for most patients, and JAK inhibitors are generally effective for only 2 to 3 years and do not delay disease progression. MF is characterized by dysplastic megakaryocytic hyperplasia and progression to fulminant disease, which is associated with progressively increasing marrow fibrosis. Despite evidence that the inflammatory milieu in MF contributes to disease progression, the specific factors that promote megakaryocyte growth are poorly understood. Here, we analyzed changes in the cytokine profiles of MF mouse models before and after the development of fibrosis, coupled with the analysis of bone marrow populations using single-cell RNA sequencing. We found high interleukin 13 (IL-13) levels in the bone marrow of MF mice. IL-13 promoted the growth of mutant megakaryocytes and induced surface expression of transforming growth factor ß and collagen biosynthesis. Similarly, analysis of samples from patients with MF revealed elevated levels of IL-13 in the plasma and increased IL-13 receptor expression in marrow megakaryocytes. In vivo, IL-13 overexpression promoted disease progression, whereas reducing IL-13/IL-4 signaling reduced several features of the disease, including fibrosis. Finally, we observed an increase in the number of marrow T cells and mast cells, which are known sources of IL-13. Together, our data demonstrate that IL-13 is involved in disease progression in MF and that inhibition of the IL-13/IL-4 signaling pathway might serve as a novel therapeutic target to treat MF.


Asunto(s)
Trastornos Mieloproliferativos , Neoplasias , Mielofibrosis Primaria , Ratones , Animales , Interleucina-13/uso terapéutico , Interleucina-4 , Neoplasias/complicaciones , Trastornos Mieloproliferativos/complicaciones , Mielofibrosis Primaria/genética , Transducción de Señal/genética , Fibrosis , Progresión de la Enfermedad
20.
Proc Natl Acad Sci U S A ; 119(41): e2207240119, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36191211

RESUMEN

The absence of Caspase-8 or its adapter, Fas-associated death domain (FADD), results in activation of receptor interacting protein kinase-3 (RIPK3)- and mixed-lineage kinase-like (MLKL)-dependent necroptosis in vivo. Here, we show that spontaneous activation of RIPK3, phosphorylation of MLKL, and necroptosis in Caspase-8- or FADD-deficient cells was dependent on the nucleic acid sensor, Z-DNA binding protein-1 (ZBP1). We genetically engineered a mouse model by a single insertion of FLAG tag onto the N terminus of endogenous MLKL (MlklFLAG/FLAG), creating an inactive form of MLKL that permits monitoring of phosphorylated MLKL without activating necroptotic cell death. Casp8-/-MlklFLAG/FLAG mice were viable and displayed phosphorylated MLKL in a variety of tissues, together with dramatically increased expression of ZBP1 compared to Casp8+/+ mice. Studies in vitro revealed an increased expression of ZBP1 in cells lacking FADD or Caspase-8, which was suppressed by reconstitution of Caspase-8 or FADD. Ablation of ZBP1 in Casp8-/-MlklFLAG/FLAG mice suppressed spontaneous MLKL phosphorylation in vivo. ZBP1 expression and downstream activation of RIPK3 and MLKL in cells lacking Caspase-8 or FADD relied on a positive feedback mechanism requiring the nucleic acid sensors cyclic GMP-AMP synthase (cGAS), stimulator of interferon genes (STING), and TBK1 signaling pathways. Our study identifies a molecular mechanism whereby Caspase-8 and FADD suppress spontaneous necroptotic cell death.


Asunto(s)
Necroptosis , Ácidos Nucleicos , Animales , Apoptosis/fisiología , Caspasa 8/genética , Caspasa 8/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteína de Dominio de Muerte Asociada a Fas/genética , Interferones/metabolismo , Ratones , Nucleotidiltransferasas/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA