Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Oncol (Dordr) ; 44(4): 851-870, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33899158

RESUMEN

PURPOSE: Recent work has highlighted the therapeutic potential of targeting autophagy to modulate cell survival in a variety of diseases including cancer. Recently, we found that the RNA-binding protein Staufen1 (STAU1) is highly expressed in alveolar rhabdomyosarcoma (ARMS) and that this abnormal expression promotes tumorigenesis. Here, we asked whether STAU1 is involved in the regulation of autophagy in ARMS cells. METHODS: We assessed the impact of STAU1 expression modulation in ARMS cell lines (RH30 and RH41), non-transformed skeletal muscle cells (C2C12) and STAU1-transgenic mice using complementary techniques. RESULTS: We found that STAU1 silencing reduces autophagy in the ARMS cell lines RH30 and RH41, while increasing their apoptosis. Mechanistically, this inhibitory effect was found to be caused by a direct negative impact of STAU1 depletion on the stability of Beclin-1 (BECN1) and ATG16L1 mRNAs, as well as by an indirect inhibition of JNK signaling via increased expression of Dual specificity phosphatase 8 (DUSP8). Pharmacological activation of JNK or expression silencing of DUSP8 was sufficient to restore autophagy in STAU1-depleted cells. By contrast, we found that STAU1 downregulation in non-transformed skeletal muscle cells activates autophagy in a mTOR-dependent manner, without promoting apoptosis. A similar effect was observed in skeletal muscles obtained from STAU1-overexpressing transgenic mice. CONCLUSIONS: Together, our data indicate an effect of STAU1 on autophagy regulation in ARMS cells and its differential role in non-transformed skeletal muscle cells. Our findings suggest a cancer-specific potential of targeting STAU1 for the treatment of ARMS.


Asunto(s)
Autofagia/genética , Proteínas del Citoesqueleto/genética , Perfilación de la Expresión Génica/métodos , Músculo Esquelético/metabolismo , Proteínas de Unión al ARN/genética , Rabdomiosarcoma Alveolar/genética , Animales , Apoptosis/genética , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Beclina-1/genética , Beclina-1/metabolismo , Western Blotting , Línea Celular , Línea Celular Tumoral , Células Cultivadas , Proteínas del Citoesqueleto/metabolismo , Regulación hacia Abajo/genética , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Músculo Esquelético/citología , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Interferencia de ARN , Proteínas de Unión al ARN/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Rabdomiosarcoma Alveolar/metabolismo , Rabdomiosarcoma Alveolar/patología , Proteína Sequestosoma-1/genética , Proteína Sequestosoma-1/metabolismo
2.
BMC Cancer ; 21(1): 120, 2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33541283

RESUMEN

BACKGROUND: Prostate cancer is one of the most common malignant cancers with the second highest global rate of mortality in men. During the early stages of disease progression, tumour growth is local and androgen-dependent. Despite treatment, a large percentage of patients develop androgen-independent prostate cancer, which often results in metastases, a leading cause of mortality in these patients. Our previous work on the RNA-binding protein Staufen1 demonstrated its novel role in cancer biology, and in particular rhabdomyosarcoma tumorigenesis. To build upon this work, we have focused on the role of Staufen1 in other forms of cancer and describe here the novel and differential roles of Staufen1 in prostate cancer. METHODS: Using a cell-based approach, three independent prostate cancer cell lines with different characteristics were used to evaluate the expression of Staufen1 in human prostate cancer relative to control prostate cells. The functional impact of Staufen1 on several key oncogenic features of prostate cancer cells including proliferation, apoptosis, migration and invasion were systematically investigated. RESULTS: We show that Staufen1 levels are increased in all human prostate cancer cells examined in comparison to normal prostate epithelial cells. Furthermore, Staufen1 differentially regulates growth, migration, and invasion in the various prostate cancer cells assessed. In LNCaP prostate cancer cells, Staufen1 regulates cell proliferation through mTOR activation. Conversely, Staufen1 regulates migration and invasion of the highly invasive, bone metastatic-derived, PC3 prostate cells via the activation of focal adhesion kinase. CONCLUSIONS: Collectively, these results show that Staufen1 has a direct impact in prostate cancer development and further demonstrate that its functions vary amongst the prostate cancer cell types. Accordingly, Staufen1 represents a novel target for the development of much-needed therapeutic strategies for prostate cancer.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Proteínas del Citoesqueleto/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias de la Próstata/patología , Proteínas de Unión al ARN/metabolismo , Apoptosis , Biomarcadores de Tumor/genética , Ciclo Celular , Movimiento Celular , Proliferación Celular , Proteínas del Citoesqueleto/genética , Humanos , Masculino , Invasividad Neoplásica , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Proteínas de Unión al ARN/genética , Células Tumorales Cultivadas
3.
Hum Mol Genet ; 29(13): 2185-2199, 2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32504084

RESUMEN

In myotonic dystrophy type 1 (DM1), the CUG expansion (CUGexp) in the 3' untranslated region of the dystrophia myotonica protein kinase messenger ribonucleic acid affects the homeostasis of ribonucleic acid-binding proteins, causing the multiple symptoms of DM1. We have previously reported that Staufen1 is increased in skeletal muscles from DM1 mice and patients and that sustained Staufen1 expression in mature mouse muscle causes a progressive myopathy. Here, we hypothesized that the elevated levels of Staufen1 contributes to the myopathic features of the disease. Interestingly, the classic DM1 mouse model human skeletal actin long repeat (HSALR) lacks overt atrophy while expressing CUGexp transcripts and elevated levels of endogenous Staufen1, suggesting a lower sensitivity to atrophic signaling in this model. We report that further overexpression of Staufen1 in the DM1 mouse model HSALR causes a myopathy via inhibition of protein kinase B signaling through an increase in phosphatase tensin homolog, leading to the expression of atrogenes. Interestingly, we also show that Staufen1 regulates the expression of muscleblind-like splicing regulator 1 and CUG-binding protein elav-like family member 1 in wild-type and DM1 skeletal muscle. Together, data obtained from these new DM1 mouse models provide evidence for the role of Staufen1 as an atrophy-associated gene that impacts progressive muscle wasting in DM1. Accordingly, our findings highlight the potential of Staufen1 as a therapeutic target and biomarker.


Asunto(s)
Atrofia Muscular Espinal/genética , Distrofia Miotónica/genética , Proteínas de Unión al ARN/genética , Empalme Alternativo/genética , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Atrofia Muscular Espinal/patología , Distrofia Miotónica/patología , Empalme del ARN/genética , ARN Mensajero/genética , Expansión de Repetición de Trinucleótido/genética
4.
Hum Mol Genet ; 26(10): 1821-1838, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28369467

RESUMEN

Converging lines of evidence have now highlighted the key role for post-transcriptional regulation in the neuromuscular system. In particular, several RNA-binding proteins are known to be misregulated in neuromuscular disorders including myotonic dystrophy type 1, spinal muscular atrophy and amyotrophic lateral sclerosis. In this study, we focused on the RNA-binding protein Staufen1, which assumes multiple functions in both skeletal muscle and neurons. Given our previous work that showed a marked increase in Staufen1 expression in various physiological and pathological conditions including denervated muscle, in embryonic and undifferentiated skeletal muscle, in rhabdomyosarcomas as well as in myotonic dystrophy type 1 muscle samples from both mouse models and humans, we investigated the impact of sustained Staufen1 expression in postnatal skeletal muscle. To this end, we generated a skeletal muscle-specific transgenic mouse model using the muscle creatine kinase promoter to drive tissue-specific expression of Staufen1. We report that sustained Staufen1 expression in postnatal skeletal muscle causes a myopathy characterized by significant morphological and functional deficits. These deficits are accompanied by a marked increase in the expression of several atrophy-associated genes and by the negative regulation of PI3K/AKT signaling. We also uncovered that Staufen1 mediates PTEN expression through indirect transcriptional and direct post-transcriptional events thereby providing the first evidence for Staufen1-regulated PTEN expression. Collectively, our data demonstrate that Staufen1 is a novel atrophy-associated gene, and highlight its potential as a biomarker and therapeutic target for neuromuscular disorders and conditions.


Asunto(s)
Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Expresión Génica , Ratones , Ratones Noqueados , Desnervación Muscular , Músculo Esquelético/metabolismo , Músculos/metabolismo , Atrofia Muscular/metabolismo , Atrofia Muscular Espinal/metabolismo , Distrofia Miotónica/metabolismo , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Fosfatidilinositol 3-Quinasas/genética , ARN/metabolismo , Procesamiento Postranscripcional del ARN , Transducción de Señal , Tensinas
5.
Sci Rep ; 7: 42342, 2017 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-28211476

RESUMEN

Rhabdomyosarcoma is the most common soft tissue sarcoma in children and young adults. Rhabdomyosarcomas are skeletal muscle-like tumours that typically arise in muscle beds, and express key myogenic regulatory factors. However, their developmental program remains blocked in the proliferative phase with cells unable to exit the cell cycle to fuse into myotubes. Recently, we uncovered a key role for the RNA-binding protein Staufen1 during myogenic differentiation through the regulation of c-myc translation. Given the known implication of c-myc in rhabdomyosarcoma, we hypothesized in the current work that Staufen1 controls rhabdomyosarcoma tumorigenesis. Here, we report for the first time the novel role of Staufen1 in cancer, specifically in rhabdomyosarcoma. We demonstrate that Staufen1 is markedly upregulated in human rhabdomyosarcoma tumours and cell lines as compared to normal skeletal muscle. Moreover, we show that Staufen1 promotes the tumorigenesis of embryonal and alveolar rhabdomyosarcoma subtypes both in cell culture and in animal models. Finally, our data demonstrate that Staufen1 has differential roles in embryonal versus alveolar rhabdomyosarcoma through the control of proliferative and apoptotic pathways, respectively. Together, these results provide the first evidence for Staufen1's direct implication in cancer biology. Accordingly, Staufen1 thus represents a novel target for the development of future therapeutic strategies for rhabdomyosarcoma.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas de Unión al ARN/metabolismo , Rabdomiosarcoma Alveolar/metabolismo , Rabdomiosarcoma Embrionario/metabolismo , Animales , Apoptosis , Carcinogénesis/metabolismo , Carcinogénesis/patología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Femenino , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Ratones SCID , Invasividad Neoplásica , Rabdomiosarcoma Alveolar/patología , Rabdomiosarcoma Embrionario/patología , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Rare Dis ; 4(1): e1225644, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27695661

RESUMEN

In a recent issue of PLOS Genetics, we reported that the double-stranded RNA-binding protein, Staufen1, functions as a disease modifier in the neuromuscular disorder Myotonic Dystrophy Type I (DM1). In this work, we demonstrated that Staufen1 regulates the alternative splicing of exon 11 of the human Insulin Receptor, a highly studied missplicing event in DM1, through Alu elements located in an intronic region. Furthermore, we found that Staufen1 overexpression regulates numerous alternative splicing events, potentially resulting in both positive and negative effects in DM1. Here, we discuss our major findings and speculate on the details of the mechanisms by which Staufen1 could regulate alternative splicing, in both normal and DM1 conditions. Finally, we highlight the importance of disease modifiers, such as Staufen1, in the DM1 pathology in order to understand the complex disease phenotype and for future development of new therapeutic strategies.

7.
Mol Biol Cell ; 27(11): 1728-39, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27030674

RESUMEN

Myotonic dystrophy (DM1) is caused by an expansion of CUG repeats (CUG(exp)) in the DMPK mRNA 3'UTR. CUG(exp)-containing mRNAs become toxic to cells by misregulating RNA-binding proteins. Here we investigated the consequence of this RNA toxicity on the cellular stress response. We report that cell stress efficiently triggers formation of stress granules (SGs) in proliferating, quiescent, and differentiated muscle cells, as shown by the appearance of distinct cytoplasmic TIA-1- and DDX3-containing foci. We show that Staufen1 is also dynamically recruited into these granules. Moreover, we discovered that DM1 myoblasts fail to properly form SGs in response to arsenite. This blockage was not observed in DM1 fibroblasts, demonstrating a cell type-specific defect. DM1 myoblasts display increased expression and sequestration of toxic CUG(exp) mRNAs compared with fibroblasts. Of importance, down-regulation of Staufen1 in DM1 myoblasts rescues SG formation. Together our data show that Staufen1 participates in the inhibition of SG formation in DM1 myoblasts. These results reveal that DM1 muscle cells fail to properly respond to stress, thereby likely contributing to the complex pathogenesis of DM1.


Asunto(s)
Gránulos Citoplasmáticos/metabolismo , Proteínas del Citoesqueleto/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Distrofia Miotónica/metabolismo , Proteínas de Unión al ARN/metabolismo , Empalme Alternativo , Animales , Técnicas de Cultivo de Célula , Diferenciación Celular/fisiología , Línea Celular , Células Cultivadas , Citoplasma/metabolismo , Gránulos Citoplasmáticos/patología , Regulación hacia Abajo , Humanos , Ratones , Fibras Musculares Esqueléticas/patología , Mioblastos/metabolismo , Mioblastos/patología , Distrofia Miotónica/genética , ARN Mensajero/metabolismo , Estrés Fisiológico/genética
8.
PLoS Genet ; 12(1): e1005827, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26824521

RESUMEN

Myotonic dystrophy type 1 (DM1) is a neuromuscular disorder caused by an expansion of CUG repeats in the 3' UTR of the DMPK gene. The CUG repeats form aggregates of mutant mRNA, which cause misregulation and/or sequestration of RNA-binding proteins, causing aberrant alternative splicing in cells. Previously, we showed that the multi-functional RNA-binding protein Staufen1 (Stau1) was increased in skeletal muscle of DM1 mouse models and patients. We also showed that Stau1 rescues the alternative splicing profile of pre-mRNAs, e.g. the INSR and CLC1, known to be aberrantly spliced in DM1. In order to explore further the potential of Stau1 as a therapeutic target for DM1, we first investigated the mechanism by which Stau1 regulates pre-mRNA alternative splicing. We report here that Stau1 regulates the alternative splicing of exon 11 of the human INSR via binding to Alu elements located in intron 10. Additionally, using a high-throughput RT-PCR screen, we have identified numerous Stau1-regulated alternative splicing events in both WT and DM1 myoblasts. A number of these aberrant ASEs in DM1, including INSR exon 11, are rescued by overexpression of Stau1. However, we find other ASEs in DM1 cells, where overexpression of Stau1 shifts the splicing patterns away from WT conditions. Moreover, we uncovered that Stau1-regulated ASEs harbour Alu elements in intronic regions flanking the alternative exon more than non-Stau1 targets. Taken together, these data highlight the broad impact of Stau1 as a splicing regulator and suggest that Stau1 may act as a disease modifier in DM1.


Asunto(s)
Empalme Alternativo/genética , Proteínas del Citoesqueleto/genética , Proteína Quinasa de Distrofia Miotónica/genética , Proteínas de Unión al ARN/genética , Expansión de Repetición de Trinucleótido/genética , Regiones no Traducidas 3' , Elementos Alu/genética , Animales , Antígenos CD/genética , Antígenos CD/metabolismo , Proteínas del Citoesqueleto/metabolismo , Humanos , Ratones , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Mioblastos/metabolismo , Mioblastos/patología , Distrofia Miotónica , Proteína Quinasa de Distrofia Miotónica/metabolismo , Unión Proteica , ARN Mensajero/genética , Proteínas de Unión al ARN/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo
9.
Hum Mol Genet ; 25(1): 24-43, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26494902

RESUMEN

Upregulation of utrophin A is an attractive therapeutic strategy for treating Duchenne muscular dystrophy (DMD). Over the years, several studies revealed that utrophin A is regulated by multiple transcriptional and post-transcriptional mechanisms, and that pharmacological modulation of these pathways stimulates utrophin A expression in dystrophic muscle. In particular, we recently showed that activation of p38 signaling causes an increase in the levels of utrophin A mRNAs and protein by decreasing the functional availability of the destabilizing RNA-binding protein called K-homology splicing regulatory protein, thereby resulting in increases in the stability of existing mRNAs. Here, we treated 6-week-old mdx mice for 4 weeks with the clinically used anticoagulant drug heparin known to activate p38 mitogen-activated protein kinase, and determined the impact of this pharmacological intervention on the dystrophic phenotype. Our results show that heparin treatment of mdx mice caused a significant ∼1.5- to 3-fold increase in utrophin A expression in diaphragm, extensor digitorum longus and tibialis anterior (TA) muscles. In agreement with these findings, heparin-treated diaphragm and TA muscle fibers showed an accumulation of utrophin A and ß-dystroglycan along their sarcolemma and displayed improved morphology and structural integrity. Moreover, combinatorial drug treatment using both heparin and 5-amino-4-imidazolecarboxamide riboside (AICAR), the latter targeting 5' adenosine monophosphate-activated protein kinase and the transcriptional activation of utrophin A, caused an additive effect on utrophin A expression in dystrophic muscle. These findings establish that heparin is a relevant therapeutic agent for treating DMD, and illustrate that combinatorial treatment of heparin with AICAR may serve as an effective strategy to further increase utrophin A expression in dystrophic muscle via activation of distinct signaling pathways.


Asunto(s)
Aminoimidazol Carboxamida/análogos & derivados , Heparina/uso terapéutico , Distrofia Muscular de Duchenne/tratamiento farmacológico , Ribonucleótidos/uso terapéutico , Utrofina/biosíntesis , Aminoimidazol Carboxamida/uso terapéutico , Animales , Línea Celular , Quimioterapia Combinada , Ratones , Ratones Endogámicos mdx , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Utrofina/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...