Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Harmful Algae ; 121: 102367, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36639186

RESUMEN

Cyanobacterial blooms imperil the use of freshwater around the globe and present challenges for water management. Studies have suggested that blooms are trigged by high temperatures and nutrient concentrations. While the roles of nitrogen and phosphorus have long been debated, cyanobacterial dominance in phytoplankton has widely been associated with climate warming. However, studies at large geographical scales, covering diverse climate regions and lake depths, are still needed to clarify the drivers of cyanobacterial success. Here, we analyzed data from 464 lakes covering a 14,000 km north-south gradient in the Americas and three lake depth categories. We show that there were no clear trends in cyanobacterial biomass (as biovolume) along latitude or climate gradients, with the exception of lower biomass in polar climates. Phosphorus was the primary resource explaining cyanobacterial biomass in the Americas, while nitrogen was also significant but particularly relevant in very shallow lakes (< 3 m depth). Despite the assessed climatic gradient water temperature was only weakly related to cyanobacterial biomass, suggesting it is overemphasized in current discussions. Depth was critical for predicting cyanobacterial biomass, and shallow lakes proved more vulnerable to eutrophication. Among other variables analyzed, only pH was significantly related to cyanobacteria biomass, likely due to a biologically mediated positive feedback under high nutrient conditions. Solutions toward managing harmful cyanobacteria should thus consider lake morphometric characteristics and emphasize nutrient control, independently of temperature gradients, since local factors are more critical - and more amenable to controls - than global external forces.


Asunto(s)
Cianobacterias , Biomasa , Lagos , Nutrientes , Nitrógeno , Fósforo
2.
Mol Phylogenet Evol ; 148: 106824, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32294544

RESUMEN

Raphidiopsis (Cylindrospermopsis) raciborskii, a globally distributed bloom-forming cyanobacterium, produces either the cytotoxin cylindrospermopsin (CYL) in Oceania, Asia and Europe or the neurotoxin saxitoxin (STX) and analogues (paralytic shellfish poison, PSP) in South America (encoded by sxt genetic cluster) and none of them in Africa. Nevertheless, this particular geographic pattern is usually overlooked in current hypotheses about the species dispersal routes. Here, we combined genomics, phylogenetic analyses, toxicity data and a literature survey to unveil the evolutionary history and spread of the species. Phylogenies based on 354 orthologous genes from all the available genomes and ribosomal ITS sequences of the taxon showed two well-defined clades: the American, having the PSP producers; and the Oceania/Europe/Asia, including the CYL producers. We propose central Africa as the original dispersion center (non-toxic populations), reaching North Africa and North America (in former Laurasia continent). The ability to produce CYL probably took place in populations that advanced to sub-Saharan Africa and then to Oceania and South America. According to the genomic context of the sxt cluster found in PSP-producer strains, this trait was acquired once by horizontal transfer in South America, where the ability to produce CYL was lost.


Asunto(s)
Toxinas Bacterianas/toxicidad , Cylindrospermopsis/clasificación , Cylindrospermopsis/genética , Genómica , Filogenia , Filogeografía , Saxitoxina/toxicidad , Uracilo/análogos & derivados , Alcaloides , Secuencia Conservada/genética , Toxinas de Cianobacterias , Funciones de Verosimilitud , Familia de Multigenes , Sintenía/genética , Uracilo/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...