Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 4212, 2022 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35273303

RESUMEN

Here, we propose a fully-automated platform using a spiral inertial microfluidic device for standardized semen preparation that can process patient-derived semen samples with diverse fluidic conditions without any pre-washing steps. We utilized the multi-dimensional double spiral (MDDS) device to effectively isolate sperm cells from other non-sperm seminal cells (e.g., leukocytes) in the semen sample. The recirculation platform was employed to minimize sample dependency and achieve highly purified and concentrated (up to tenfold) sperm cells in a rapid and fully-automated manner (~ 10 min processing time for 50 mL of diluted semen sample). The clinical (raw) semen samples obtained from healthy donors were directly used without any pre-washing step to evaluate the developed separation platform, which showed excellent performance with ~ 80% of sperm cell recovery, and > 99.95% and > 98% removal of 10-µm beads (a surrogate for leukocytes) from low-viscosity and high-viscosity semen samples, respectively. We expect that the novel platform will be an efficient and automated tool to achieve purified sperm cells directly from raw semen samples for assisted reproductive technologies (ARTs) as an alternative to density centrifugation or swim-up methods, which often suffer from the low recovery of sperm cells and labor-intensive steps.


Asunto(s)
Microfluídica , Análisis de Semen , Humanos , Dispositivos Laboratorio en un Chip , Masculino , Semen , Análisis de Semen/métodos , Motilidad Espermática , Espermatozoides
2.
Science ; 371(6533)2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33446482

RESUMEN

Sperm are haploid but must be functionally equivalent to distribute alleles equally among progeny. Accordingly, gene products are shared through spermatid cytoplasmic bridges that erase phenotypic differences between individual haploid sperm. Here, we show that a large class of mammalian genes are not completely shared across these bridges. We call these genes "genoinformative markers" (GIMs) and show that a subset can act as selfish genetic elements that spread alleles unevenly through murine, bovine, and human populations. We identify evolutionary pressure to avoid conflict between sperm and somatic function as GIMs are enriched for testis-specific gene expression, paralogs, and isoforms. Therefore, GIMs and sperm-level natural selection may help to explain why testis gene expression patterns are an outlier relative to all other tissues.


Asunto(s)
Expresión Génica , Haploidia , Selección Genética , Espermatozoides/metabolismo , Animales , Secuencia Conservada , Marcadores Genéticos , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Cromosomas Sexuales/genética , Análisis de la Célula Individual , Espermátides/metabolismo , Testículo/metabolismo
3.
Biophys J ; 118(1): 85-95, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31757359

RESUMEN

Holdase chaperones are known to be central to suppressing aggregation, but how they affect substrate conformations remains poorly understood. Here, we use optical tweezers to study how the holdase Hsp33 alters folding transitions within single maltose binding proteins and aggregation transitions between maltose binding protein substrates. Surprisingly, we find that Hsp33 not only suppresses aggregation but also guides the folding process. Two modes of action underlie these effects. First, Hsp33 binds unfolded chains, which suppresses aggregation between substrates and folding transitions within substrates. Second, Hsp33 binding promotes substrate states in which most of the chain is folded and modifies their structure, possibly by intercalating its intrinsically disordered regions. A statistical ensemble model shows how Hsp33 function results from the competition between these two contrasting effects. Our findings reveal an unexpectedly comprehensive functional repertoire for Hsp33 that may be more prevalent among holdases and dispels the notion of a strict chaperone hierarchy.


Asunto(s)
Proteínas de Choque Térmico/metabolismo , Agregado de Proteínas , Pliegue de Proteína , Modelos Moleculares
4.
J R Soc Interface ; 16(155): 20180966, 2019 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-31213177

RESUMEN

Non-equilibrium atmospheric-pressure plasmas are an alternative means to sterilize and disinfect. Plasma-mediated protein aggregation has been identified as one of the mechanisms responsible for the antibacterial features of plasma. Heat shock protein 33 (Hsp33) is a chaperone with holdase function that is activated when oxidative stress and unfolding conditions coincide. In its active form, it binds unfolded proteins and prevents their aggregation. Here we analyse the influence of plasma on the structure and function of Hsp33 of Escherichia coli using a dielectric barrier discharge plasma. While most other proteins studied so far were rapidly inactivated by atmospheric-pressure plasma, exposure to plasma activated Hsp33. Both, oxidation of cysteine residues and partial unfolding of Hsp33 were observed after plasma treatment. Plasma-mediated activation of Hsp33 was reversible by reducing agents, indicating that cysteine residues critical for regulation of Hsp33 activity were not irreversibly oxidized. However, the reduction yielded a protein that did not regain its original fold. Nevertheless, a second round of plasma treatment resulted again in a fully active protein that was unfolded to an even higher degree. These conformational states were not previously observed after chemical activation with HOCl. Thus, although we could detect the formation of HOCl in the liquid phase during plasma treatment, we conclude that other species must be involved in plasma activation of Hsp33. E. coli cells over-expressing the Hsp33-encoding gene hslO from a plasmid showed increased survival rates when treated with plasma while an hslO deletion mutant was hypersensitive emphasizing the importance of protein aggregation as an inactivation mechanism of plasma.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/crecimiento & desarrollo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Gases em Plasma/química , Agregado de Proteínas , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Choque Térmico/genética , Oxidación-Reducción
5.
Mol Cell ; 63(5): 768-80, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27570072

RESUMEN

Polyphosphate (polyP), a several billion-year-old biopolymer, is produced in every cell, tissue, and organism studied. Structurally extremely simple, polyP consists of long chains of covalently linked inorganic phosphate groups. We report here the surprising discovery that polyP shows a remarkable efficacy in accelerating amyloid fibril formation. We found that polyP serves as an effective nucleation source for various different amyloid proteins, ranging from bacterial CsgA to human α-synuclein, Aß1-40/42, and Tau. polyP-associated α-synuclein fibrils show distinct differences in seeding behavior, morphology, and fibril stability compared with fibrils formed in the absence of polyP. In vivo, the amyloid-stimulating and fibril-stabilizing effects of polyP have wide-reaching consequences, increasing the rate of biofilm formation in pathogenic bacteria and mitigating amyloid toxicity in differentiated neuroblastoma cells and C. elegans strains that serve as models for human folding diseases. These results suggest that we have discovered a conserved cytoprotective modifier of amyloidogenic processes.


Asunto(s)
Péptidos beta-Amiloides/agonistas , Proteínas de Escherichia coli/agonistas , Fragmentos de Péptidos/agonistas , Polifosfatos/farmacología , alfa-Sinucleína/agonistas , Proteínas tau/agonistas , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Animales , Animales Modificados Genéticamente , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Línea Celular Tumoral , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expresión Génica , Humanos , Cinética , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Polifosfatos/química , Pliegue de Proteína/efectos de los fármacos , alfa-Sinucleína/química , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Proteínas tau/química , Proteínas tau/genética , Proteínas tau/metabolismo
6.
Biochem Soc Trans ; 42(4): 917-21, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25109979

RESUMEN

The era in which ROS (reactive oxygen species) were simply the 'bad boys of biology' is clearly over. High levels of ROS are still rightfully considered to be toxic to many cellular processes and, as such, contribute to disease conditions and cell death. However, the high toxicity of ROS is also extremely beneficial, particularly as it is used to kill invading micro-organisms during mammalian host defence. Moreover, a transient, often more localized, increase in ROS levels appears to play a major role in signal transduction processes and positively affects cell growth, development and differentiation. At the heart of all these processes are redox-regulated proteins, which use oxidation-sensitive cysteine residues to control their function and by extension the function of the pathways that they are part of. Our work has contributed to changing the view about ROS through: (i) our characterization of Hsp33 (heat-shock protein 33), one of the first redox-regulated proteins identified, whose function is specifically activated by ROS, (ii) the development of quantitative tools that reveal extensive redox-sensitive processes in bacteria and eukaryotes, and (iii) the discovery of a link between early exposure to oxidants and aging. Our future research programme aims to generate an integrated and system-wide view of the beneficial and deleterious effects of ROS with the central goal to develop more effective antioxidant strategies and more powerful antimicrobial agents.


Asunto(s)
Especies Reactivas de Oxígeno/metabolismo , Aerobiosis/fisiología , Envejecimiento/metabolismo , Animales , Humanos , Oxidación-Reducción , Estrés Oxidativo/fisiología
7.
Proc Natl Acad Sci U S A ; 111(16): E1610-9, 2014 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-24706920

RESUMEN

Commensal and pathogenic bacteria must deal with many different stress conditions to survive in and colonize the human gastrointestinal tract. One major challenge that bacteria encounter in the gut is the high concentration of bile salts, which not only aid in food absorption but also act as effective physiological antimicrobials. The mechanism by which bile salts limit bacterial growth is still largely unknown. Here, we show that bile salts cause widespread protein unfolding and aggregation, affecting many essential proteins. Simultaneously, the bacterial cytosol becomes highly oxidizing, indicative of disulfide stress. Strains defective in reducing oxidative thiol modifications, restoring redox homeostasis, or preventing irreversible protein aggregation under disulfide stress conditions are sensitive to bile salt treatment. Surprisingly, cholate and deoxycholate, two of the most abundant and very closely related physiological bile salts, vary substantially in their destabilizing effects on proteins in vitro and cause protein unfolding of different subsets of proteins in vivo. Our results provide a potential mechanistic explanation for the antimicrobial effects of bile salts, help explain the beneficial effects of bile salt mixtures, and suggest that we have identified a physiological source of protein-unfolding disulfide stress conditions in bacteria.


Asunto(s)
Ácidos y Sales Biliares/farmacología , Disulfuros/metabolismo , Desplegamiento Proteico/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Ácidos y Sales Biliares/química , Colatos/química , Colatos/farmacología , Citosol/efectos de los fármacos , Citosol/metabolismo , Ácido Desoxicólico/química , Ácido Desoxicólico/farmacología , Humanos , Oxidación-Reducción/efectos de los fármacos , Estructura Cuaternaria de Proteína
8.
Mol Cell ; 53(5): 689-99, 2014 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-24560923

RESUMEN

Composed of up to 1,000 phospho-anhydride bond-linked phosphate monomers, inorganic polyphosphate (polyP) is one of the most ancient, conserved, and enigmatic molecules in biology. Here we demonstrate that polyP functions as a hitherto unrecognized chaperone. We show that polyP stabilizes proteins in vivo, diminishes the need for other chaperone systems to survive proteotoxic stress conditions, and protects a wide variety of proteins against stress-induced unfolding and aggregation. In vitro studies reveal that polyP has protein-like chaperone qualities, binds to unfolding proteins with high affinity in an ATP-independent manner, and supports their productive refolding once nonstress conditions are restored. Our results uncover a universally important function for polyP and suggest that these long chains of inorganic phosphate may have served as one of nature's first chaperones, a role that continues to the present day.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Chaperonas Moleculares/metabolismo , Polifosfatos/metabolismo , Dominio Catalítico , Dicroismo Circular , Farmacorresistencia Bacteriana , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/metabolismo , Calor , Luciferasas/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Oxígeno/metabolismo , Fenotipo , Desnaturalización Proteica , Desplegamiento Proteico , Factores de Tiempo
9.
J Biol Chem ; 288(37): 26489-96, 2013 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-23861395

RESUMEN

Maintenance of the cellular redox balance is crucial for cell survival. An increase in reactive oxygen, nitrogen, or chlorine species can lead to oxidative stress conditions, potentially damaging DNA, lipids, and proteins. Proteins are very sensitive to oxidative modifications, particularly methionine and cysteine residues. The reversibility of some of these oxidative protein modifications makes them ideally suited to take on regulatory roles in protein function. This is especially true for disulfide bond formation, which has the potential to mediate extensive yet fully reversible structural and functional changes, rapidly adjusting the protein's activity to the prevailing oxidant levels.


Asunto(s)
Cisteína/química , Disulfuros/química , Oxidantes/química , Oxidación-Reducción , Proteínas/química , Animales , Antioxidantes/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Estrés Oxidativo , Peroxidasas/metabolismo , Peróxidos/química , Especies Reactivas de Oxígeno/química , Compuestos de Sulfhidrilo/química
10.
Cell ; 148(5): 947-57, 2012 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-22385960

RESUMEN

The redox-regulated chaperone Hsp33 protects organisms against oxidative stress that leads to protein unfolding. Activation of Hsp33 is triggered by the oxidative unfolding of its own redox-sensor domain, making Hsp33 a member of a recently discovered class of chaperones that require partial unfolding for full chaperone activity. Here we address the long-standing question of how chaperones recognize client proteins. We show that Hsp33 uses its own intrinsically disordered regions to discriminate between unfolded and partially structured folding intermediates. Binding to secondary structure elements in client proteins stabilizes Hsp33's intrinsically disordered regions, and this stabilization appears to mediate Hsp33's high affinity for structured folding intermediates. Return to nonstress conditions reduces Hsp33's disulfide bonds, which then significantly destabilizes the bound client proteins and in doing so converts them into less-structured, folding-competent client proteins of ATP-dependent foldases. We propose a model in which energy-independent chaperones use internal order-to-disorder transitions to control substrate binding and release.


Asunto(s)
Bacterias/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Modelos Moleculares , Péptidos/metabolismo , Pliegue de Proteína
11.
Mol Microbiol ; 79(6): 1547-56, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21231970

RESUMEN

NalC is a TetR type regulator that represses the multidrug efflux pump MexAB-OprM in Pseudomonas aeruginosa. Here we explain the mechanism of NalC-mediated regulation of MexAB-OprM. We show that NalC non-covalently binds chlorinated phenols and chemicals containing chlorophenol side-chains such as triclosan. NalC-chlorinated phenol binding results in its dissociation from promoter DNA and upregulation of NalC's downstream targets, including the MexR antirepressor ArmR. ArmR upregulation and MexR-ArmR complex formation have previously been shown to upregulate MexAB-OprM. In vivo mexB and armR expression analyses were used to corroborate in vitro NalC-chlorinated phenol binding. We also show that the interaction between chlorinated phenols and NalC is reversible, such that removal of these chemicals restored NalC promoter DNA binding. Thus, the NalC-chlorinated phenol interaction is likely a pertinent physiological mechanism that P. aeruginosa uses to control expression of the MexAB-OprM efflux pump.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteínas de Transporte de Membrana/metabolismo , Pentaclorofenol/metabolismo , Pseudomonas aeruginosa/metabolismo , Proteínas de la Membrana Bacteriana Externa/genética , Farmacorresistencia Bacteriana , Proteínas de Transporte de Membrana/genética , Pentaclorofenol/farmacología , Regiones Promotoras Genéticas , Unión Proteica , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/genética
12.
Antioxid Redox Signal ; 14(5): 757-66, 2011 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-21067413

RESUMEN

Protein kinase C (PKC) is activated by lipid second messengers or redox action, raising the question whether these activation modes involve the same or alternate mechanisms. Here we show that both lipid activators and oxidation target the zinc-finger domains of PKC, suggesting a unifying activation mechanism. We found that lipid agonist-binding or redox action leads to zinc release and disassembly of zinc fingers, thus triggering large-scale unfolding that underlies conversion to the active enzyme. These results suggest that PKC zinc fingers, originally considered purely structural devices, are in fact redox-sensitive flexible hinges, whose conformation is controlled both by redox conditions and lipid agonists.


Asunto(s)
Ésteres del Forbol/metabolismo , Ésteres del Forbol/farmacología , Proteína Quinasa C/química , Proteína Quinasa C/metabolismo , Dedos de Zinc , Animales , Citocromos c/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Mutación de Línea Germinal/genética , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Ratones , Mitocondrias/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Oxidación-Reducción , Pliegue de Proteína/efectos de los fármacos , Proteína Quinasa C/genética , Ratas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Zinc/metabolismo
13.
J Biol Chem ; 285(15): 11243-51, 2010 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-20139072

RESUMEN

Hsp33, a molecular chaperone specifically activated by oxidative stress conditions that lead to protein unfolding, protects cells against oxidative protein aggregation. Stress sensing in Hsp33 occurs via its C-terminal redox switch domain, which consists of a zinc center that responds to the presence of oxidants and an adjacent metastable linker region, which responds to unfolding conditions. Here we show that single mutations in the N terminus of Hsp33 are sufficient to either partially (Hsp33-M172S) or completely (Hsp33-Y12E) abolish this post-translational regulation of Hsp33 chaperone function. Both mutations appear to work predominantly via the destabilization of the Hsp33 linker region without affecting zinc coordination, redox sensitivity, or substrate binding of Hsp33. We found that the M172S substitution causes moderate destabilization of the Hsp33 linker region, which seems sufficient to convert the redox-regulated Hsp33 into a temperature-controlled chaperone. The Y12E mutation leads to the constitutive unfolding of the Hsp33 linker region thereby turning Hsp33 into a constitutively active chaperone. These results demonstrate that the redox-controlled unfolding of the Hsp33 linker region plays the central role in the activation process of Hsp33. The zinc center of Hsp33 appears to act as the redox-sensitive toggle that adjusts the thermostability of the linker region to the cell redox status. In vivo studies confirmed that even mild overexpression of the Hsp33-Y12E mutant protein inhibits bacterial growth, providing important evidence that the tight functional regulation of Hsp33 chaperone activity plays a vital role in bacterial survival.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Choque Térmico/química , Algoritmos , Sitios de Unión , Dicroismo Circular , Modelos Moleculares , Chaperonas Moleculares/química , Mutagénesis Sitio-Dirigida , Mutación , Oxidación-Reducción , Conformación Proteica , Desnaturalización Proteica , Pliegue de Proteína , Procesamiento Proteico-Postraduccional , Estructura Terciaria de Proteína , Tirosina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...