Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Foods ; 13(12)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38928785

RESUMEN

Poly-(Lactic Acid) (PLA) is regarded as one of the most promising bio-based polymers due to its biocompatibility, biodegradability, non-toxicity, and processability. The investigation of the potential of PLA films in preserving the quality of strawberries is fully in line with the current directives on the sustainability of food packaging. The study aims to investigate the effects of PLA films on strawberries' physical and chemical properties, thereby determining whether they can be used as a post-harvest solution to control antioxidant loss, reduce mold growth, and extend the shelf-life of strawberries. Well-designed PLA films with different-sized holes obtained by laser perforation (PLA0, PLA16 and PLA23) were tested against a conventional packaging polypropylene (PP) tray for up to 20 days of storage. Weight loss and mold growth were significantly slower in strawberries packed in PLA films. At the same time, PLA-based films effectively preserved the deterioration of vitamin C content, polyphenols and antioxidant activity compared to the control. Furthermore, among all, the micro-perforated PLA film (PLA23) showed better preservation in the different parameters evaluated. These results could effectively inhibit the deterioration of fruit quality, showing promising expectations as an effective strategy to extend the shelf-life of strawberries.

3.
Foods ; 13(3)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38338492

RESUMEN

The valorization of food industry waste is essential to the sustainable development of the agro-food industry, starting from the extraction of plant special metabolites, a challenge that still exists today [...].

4.
Foods ; 12(22)2023 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-38002154

RESUMEN

Ancient grains have gained considerable attention in recent years, as some research suggests they may be healthier than modern wheat. The present study aims to evaluate the chemical, rheological, and microbiological features of three Southern Italian cultivated ancient wheat varieties: Risciola, Carosella, and Saragolla. ATR-FTIR analyses were performed on the finely ground grain samples of the three varieties. The selected grains were ground with a stone mill, and different sifting degrees (whole-100%, type 1-80%, and type 0-72%) were evaluated. The flours showed a good nutritional profile, a higher amylose/amylopectin ratio, and a lower glycemic index than the literature. The gluten index of the samples was in the range 2.6-28.9%, and the flours can be classified as weak, having a value <30%. The farinographic test showed a short development time, low dough stability, a high softening degree, and water absorption, which increased with the degree of sifting. Microbiological analyses performed on flours from ancient grains at different degrees of sifting show their safety, according to their microbiological parameters, which fall within the legal microbiological requirements established by the European Commission Regulation (EC).

5.
Foods ; 12(14)2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37509770

RESUMEN

The wine industry produces large amounts of grape pomace (GP), a waste that needs to be disposed of properly. Bioactive compounds with high added value can be recovered from GP as an interesting strategy to reduce the environmental impact. Here, two different technologies were employed to recover polyphenol compounds from GP: microwave hydrodiffusion and gravity (MHG) and ultrasound-assisted extraction (UAE). The further purification of UAE and MHG extracts was carried out through solid-phase extraction (SPE) to obtain three fractions, F1, F2 and F3. ATR-FTIR analysis confirmed the presence of sugar and polysaccharide components in F1, as well as non-anthocyanin and anthocyanin compounds in F2 and F3, respectively. Also, the chemical profile was determined by HPLC-UV-DAD, identifying the presence of catechin in F2, and malvidin-3-O-glucoside chloride and cyanidin chloride derivative as the main anthocyanin compounds in F3. The fractions and their parental extracts were characterized for total phenolic content (TPC) and scavenger activity by in vitro assays. We found that F2-MHG and F3-MHG contained phenol contents 6.5 and 8.5 times higher than those of the parental non-fractionated extracts. Finally, F3-MHG (100 µg/mL, w/v) was shown to reduce the proliferation of HT-29 cells.

6.
Curr Issues Mol Biol ; 44(10): 5106-5116, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36286061

RESUMEN

Given the increasing interest in bioactive dietary components that can modulate gene expression enhancing human health, three metabolites isolated from hemp seeds-cannabidiolic acid, N-trans-caffeoyltyramine, and cannabisin B-were examined for their ability to change the expression levels of microRNAs in human neural cells. To this end, cultured SH-SY5Y cells were treated with the three compounds and their microRNA content was characterized by next-generation small RNA sequencing. As a result, 31 microRNAs underwent major expression changes, being at least doubled or halved by the treatments. A computational analysis of the biological pathways affected by these microRNAs then showed that some are implicated in neural functions, such as axon guidance, hippocampal signaling, and neurotrophin signaling. Of these, miR-708-5p, miR-181a-5p, miR-190a-5p, miR-199a-5p, and miR-143-3p are known to be involved in Alzheimer's disease and their expression changes are expected to ameliorate neural function. Overall, these results provide new insights into the mechanism of action of hemp seed metabolites and encourage further studies to gain a better understanding of their biological effects on the central nervous system.

7.
Molecules ; 28(1)2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36615298

RESUMEN

The management of orofacial pain to alleviate the quality of life of affected patients is becoming increasingly challenging for scientific research and healthcare professionals. From this perspective, in addition to conventional therapies, new alternatives are being sought, increasingly looking at the use of both natural and synthetic products. Cannabis sativa L. represents an interesting source of bioactive compounds, including non-psychoactive cannabinoids, flavonoids, and terpenes, many of which are effective in improving pain intensity. Here, we aim to analyze the possible mechanisms of action of the bioactive natural and synthetic hemp-derived compounds responsible for the modulatory effects on pain-related pathways. The ability of these compounds to act on multiple mechanisms through a synergistic effect, reducing both the release of inflammatory mediators and regulating the response of the endocannabinoid system, makes them interesting agents for alternative formulations to be used in orofacial pain.


Asunto(s)
Cannabinoides , Cannabis , Alucinógenos , Humanos , Calidad de Vida , Cannabinoides/farmacología , Cannabinoides/uso terapéutico , Agonistas de Receptores de Cannabinoides , Dolor Facial/tratamiento farmacológico
8.
Nutrients ; 15(1)2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36615840

RESUMEN

Regular consumption of olive oil is associated with protection against chronic-degenerative diseases, such as cancer. Epidemiological evidence indicates an inverse association between olive oil intake and bladder cancer risk. Bladder cancer is among the most common forms of cancer; in particular, the transitional cell carcinoma histotype shows aggressive behavior. We investigated the anti-proliferative effects of a phenolic extract prepared from an extra virgin olive oil (EVOOE) on two human bladder cancer cell lines, namely RT112 and J82, representing the progression from low-grade to high-grade tumors, respectively. In RT112, the EVOOE reduced cell viability (IC50 = 240 µg/mL at 24 h), triggering a non-protective form of autophagy, evidenced by the autophagosome formation and the increase in LC-3 lipidation. In J82, EVOOE induced a strong decrease in cell viability after 24 h of treatment (IC50 = 65.8 µg/mL) through rapid and massive apoptosis, assessed by Annexin V positivity and caspase-3 and -9 activation. Moreover, in both bladder cancer cell lines, EVOOE reduced intracellular reactive oxygen species, but this antioxidant effect was not correlated with its anti-proliferative outcomes. Data obtained suggest that the mixture of phenolic compounds in extra virgin olive oil activates different anti-proliferative pathways.


Asunto(s)
Fenoles , Neoplasias de la Vejiga Urinaria , Humanos , Aceite de Oliva/farmacología , Fenoles/farmacología , Fenoles/análisis , Antioxidantes/farmacología , Línea Celular , Aceites de Plantas/farmacología
9.
Polymers (Basel) ; 13(9)2021 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-34066545

RESUMEN

Reuse of waste glass can significantly decrease the quantity of waste to be treated or disposed of in landfills, allowing to both diminish the ecological damage and to reduce the costs of transportation for removal. Geopolymer mixes with diverse percentages (20, 50 and 60 wt%) and with different grain size ranges (37 µm < diam < 53 µm; 75 µm < diam < 105 µm) of waste glass and the residual part of pure metakaolin were prepared by addition of NaOH and sodium silicate as alkaline activator solutions. The effect of waste glass on the mechanical and microstructure of new geopolymers has been explored in this study. Fourier transform infrared spectroscopy (FTIR) evidenced the reactivity of waste glass in terms of Si-O and Si-O-Al bonds, more evident for the finer waste glass powder. The consolidation of the materials has been established by reduced weight loss in water and decreased pH and ionic conductivity of the eluate after 7, 14 and 28 days of curing at room temperature. The decrease of the mechanical properties with waste glass content was less evident for the finer glassy powders, yet the value of about 4-5 MPa indicates their potential use as non-structural materials. The consolidated final materials were tested for their effects on the microbial growth of Escherichia coli and Enterococcus faecalis after 24 and 48 h, respectively. The samples showed a very limited and absent inhibition zone, for fine and coarse grain size ranges, respectively. Finally, the cytotoxicity tests accomplished the ecological valuation of the final consolidated products.

10.
Molecules ; 26(9)2021 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-34063214

RESUMEN

Cannabis sativa L. is a source of over 150 active compounds known as phytocannabinoids that are receiving renewed interest due to their diverse pharmacologic activities. Indeed, phytocannabinoids mimic the endogenous bioactive endocannabinoids effects through activation of CB1 and CB2 receptors widely described in the central nervous system and peripheral tissues. All phytocannabinoids have been studied for their protective actions towards different biological mechanisms, including inflammation, immune response, oxidative stress that, altogether, result in an inhibitory activity against the carcinogenesis. The role of the endocannabinoid system is not yet completely clear in cancer, but several studies indicate that cannabinoid receptors and endogenous ligands are overexpressed in different tumor tissues. Recently, in vitro and in vivo evidence support the effectiveness of phytocannabinoids against various cancer types, in terms of proliferation, metastasis, and angiogenesis, actions partially due to their ability to regulate signaling pathways critical for cell growth and survival. The aim of this review was to report the current knowledge about the action of phytocannabinoids from Cannabis sativa L. against cancer initiation and progression with a specific regard to brain, breast, colorectal, and lung cancer as well as their possible use in the therapies. We will also report the known molecular mechanisms responsible for such positive effects. Finally, we will describe the actual therapeutic options for Cannabis sativa L. and the ongoing clinical trials.


Asunto(s)
Cannabinoides/farmacología , Cannabis/química , Neoplasias/patología , Neoplasias/prevención & control , Sitio Alostérico , Animales , Antineoplásicos/farmacología , Cannabinoides/química , Sistema Nervioso Central/efectos de los fármacos , Ensayos Clínicos como Asunto , Progresión de la Enfermedad , Resistencia a Antineoplásicos , Endocannabinoides , Humanos , Sistema Inmunológico , Inflamación , Estrés Oxidativo , Fitoquímicos/química , Fitoquímicos/farmacología , Receptor Cannabinoide CB1/química , Receptor Cannabinoide CB2/química , Resultado del Tratamiento
11.
J Pharm Biomed Anal ; 201: 114125, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-33989997

RESUMEN

The interest in industrial hemp-based products and by-products to be utilized in food and nutraceutical sector is strictly linked to the demand for improved analytical methods to rapidly discriminate acid phytocannabinoid isomers. Indeed, the differentiation of acid phytocannabinoids, also named pre-cannabinoids, is not properly exploited and valued until now, and it is challenging. Herein, using high-resolution MS/MS, the most common pre-cannabinoids with the resorcinol core linked to the alkyl five carbons chain were deeply investigated in terms of their reactivity to collision-induced dissociation, gaining key data on the integrated energy framework of their dissociation pathway. In fact, CBD-, THC- and CBC-type pre-cannabinoids could be discriminated based on the base peak identity, and the intensity of common fragment ions, when collision energy fragmented precursor ions by 70-75 %. In particular, energy-resolved CID mass spectra highlighted that fragmentation occurs, unrelatedly to alkyl chain length, at phenolic and monoterpenic moieties levels. Accordingly, this tool is effective for further differentiating pre-cannabinoid homologues, from methyl- up to heptyl-homologues, getting new insight in acid cannabinoids heritage of hemp and its products.


Asunto(s)
Cannabinoides , Cannabis , Cannabinoides/análisis , Cromatografía Líquida de Alta Presión , Dronabinol , Iones , Espectrometría de Masas en Tándem
12.
Molecules ; 25(18)2020 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-32911757

RESUMEN

The epidemic, caused by SARS-CoV-2 at the beginning of 2020, led us to a serious change in our lifestyle that for about three months has confined us to our homes, far from our laboratory routine. In this period, the belief that the work of a researcher should never stop has been the driving force in writing the present paper. It aims at reviewing the recent scientific knowledge about in vitro experimental data that focused on the antiviral role of phenols and polyphenols against different species of coronaviruses (CoVs), pointing up the viral targets potentially involved. In the current literature scenario, the papain-like and the 3-chymotrypsin-like proteases seem to be the most deeply investigated and a number of isolated natural (poly)phenols has been screened for their efficacy.


Asunto(s)
Antivirales/farmacología , Investigación Biomédica/tendencias , Coronavirus/efectos de los fármacos , Polifenoles/farmacología , Animales , Betacoronavirus/efectos de los fármacos , Quimasas/uso terapéutico , Humanos , SARS-CoV-2
13.
Foods ; 9(8)2020 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-32824076

RESUMEN

After a long period defined by prohibition of hemp production, this crop has been recently re-evaluated in various industrial sectors. Until now, inflorescences have been considered a processing by-product, not useful for the food industry, and their disposal also represents an economic problem for farmers. The objects of the present work are coffee blends enriched with shredded inflorescences of different cultivars of industrial hemp that underwent solid/liquid extraction into the Italian "moka" coffee maker. The obtained coffee drinks were analyzed by Ultra-High-Performance Liquid Chromatography-High Resolution Mass Spectrometry (UHPLC-HRMS) tools for their quali-quantitative phytocannabinoid profiles. The results showed that they are minor constituents compared to chlorogenic acids and caffeine in all samples. In particular, cannabidiolic acid was the most abundant among phytocannabinoids, followed by tetrahydrocannabinolic acid. Neither Δ9-tetrahydrocannabinol (THC) nor cannabinol, its main oxidation product, were detected. The percentage of total THC never exceeded 0.04%, corresponding to 0.4 mg/kg, far below the current maximum limits imposed by the Italian Ministry of Health. This study opens up a new concrete possibility to exploit hemp processing by-products in order to obtain drinks with high added value and paves the way for further in vitro and in vivo investigations aimed at promoting their benefits for human health.

14.
Molecules ; 25(11)2020 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-32517131

RESUMEN

Cannabidiolic acid (CBDA) is the main phytocannabinoid in fiber and seed-oil hemp (Cannabis sativa L.) plants, but its potential health-related capabilities have been masked for years by a greater scientific interest towards its neutral derivative cannabidiol (CBD). This review aims to collect from the literature and critically discuss all the information about this molecule, starting from its biosynthesis, and focusing on its bioactivity, as an anti-inflammatory, anti-emetic, anti-convulsant, and anti-cancerogenic drug. Furthermore, in the awareness that, despite its multiple bioactive effects, currently poor efforts have been made to achieve its reliable purification, herein, we propose a relatively simple, fast, and inexpensive procedure for its recovery from pollen of industrial hemp cultivars. Spectroscopic and spectrometric techniques allowed us to unequivocally identify pure isolated CBDA and to distinguish it from the constitutional isomer tetrahydrocannabinolic acid (THCA-A).


Asunto(s)
Antiinflamatorios/farmacología , Anticarcinógenos/farmacología , Anticonvulsivantes/farmacología , Antieméticos/farmacología , Antioxidantes/farmacología , Cannabinoides/farmacología , Cannabis/química
15.
Molecules ; 25(8)2020 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-32290396

RESUMEN

Marketed green teas (GTs) can highly vary in their chemical composition, due to different origins, processing methods, and a lack of standardization of GT-based products. Consequently, biological activities become difficult to correlate to the presence/content of certain constituents. Herein, ultra-high-performance liquid chromatography (UHPLC) combined with high-resolution tandem mass spectrometry (HR MS/MS) was successfully applied to six commercial GT products, extracted by ethanol sonication, to disclose their polyphenol profile beyond the well-known catechins. The relative abundance of each class of metabolites was correlated to antiradical and antilipoperoxidant data through hierarchical clustering analysis, since it reasonably affects the beneficial properties of the product that reaches the consumer. The thiobarbituric acid reactive substances (TBARS) assay demonstrated that GT extracts effectively counteracted the UV-induced lipoperoxidation of hemp oil, which is highly rich in Polyunsaturated Fatty Acids (PUFAs), and therefore highly unstable. The Relative Antioxidant Capacity Index (RACI) comprehensively emphasized that gunpower and blend in filter GTs appeared to be the less active matrices, and except for a GT-based supplement, the Sencha GT, which was particularly rich in flavonol glycosides, was the most active, followed by Bancha GT.


Asunto(s)
Catequina/análisis , Flavonoles/análisis , Glicósidos/análisis , Extractos Vegetales/química , Té/química , Camellia sinensis/química , Cromatografía Líquida de Alta Presión , Hojas de la Planta/química , Espectrometría de Masas en Tándem , Sustancias Reactivas al Ácido Tiobarbitúrico/análisis
16.
Molecules ; 25(5)2020 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-32110947

RESUMEN

The weak but noteworthy presence of (poly)phenols in hemp seeds has been long overshadowed by the essential polyunsaturated fatty acids and digestible proteins, considered responsible for their high nutritional benefits. Instead, lignanamides and their biosynthetic precursors, phenylamides, seem to display interesting and diverse biological activities only partially clarified in the last decades. Herein, negative mode HR-MS/MS techniques were applied to the chemical investigation of a (poly)phenol-rich fraction, obtained from hemp seeds after extraction/fractionation steps. This extract contained phenylpropanoid amides and their random oxidative coupling derivatives, lignanamides, which were the most abundant compounds and showed a high chemical diversity, deeply unraveled through high resolution tandem mass spectrometry (HR-MS/MS) tools. The effect of different doses of the lignanamides-rich extract (LnHS) on U-87 glioblastoma cell line and non-tumorigenic human fibroblasts was evaluated. Thus, cell proliferation, genomic DNA damage, colony forming and wound repair capabilities were assessed, as well as LnHS outcome on the expression levels of pro-inflammatory cytokines. LnHS significantly inhibited U-87 cancer cell proliferation, but not that of fibroblasts, and was able to reduce U-87 cell migration, inducing further DNA damage. No modification in cytokines' expression level was found. Data acquired suggested that LnHS acted in U-87 cells by inducing the apoptosis machinery and suppressing the autophagic cell death.


Asunto(s)
Amidas/farmacología , Apoptosis/efectos de los fármacos , Cannabis/química , Glioblastoma/patología , Amidas/química , Autofagia/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Citocinas/metabolismo , Daño del ADN , Fibroblastos/efectos de los fármacos , Flavonoles/farmacología , Glicósidos/farmacología , Humanos , Isomerismo , Proteínas de Neoplasias/metabolismo , Sirtuinas/metabolismo , Espectrometría de Masas en Tándem
17.
Materials (Basel) ; 13(2)2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31952164

RESUMEN

The sol-gel route represents a valuable technique to obtain functional materials, in which organic and inorganic members are closely connected. Herein, four hybrid materials, containing caffeic acid entrapped in a silica matrix at 5, 10, 15, and 20 wt.%, were synthesized and characterized through Fourier-Transform Infrared (FT-IR) and Ultraviolet-Visible (UV-Vis) spectroscopy. FT-IR analysis was also performed to evaluate the ability to induce the hydroxyapatite nucleation. Despite some structural changes occurring on the phenol molecular skeleton, hybrid materials showed scavenging properties vs. 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical and 2,2'-azinobis-(3-ethylbenzothiazolin-6-sulfonic acid) radical cation (ABTS•+), which was dependent on the tested dose and on the caffeic acid wt.%. The SiO2/caffeic acid materials are proposed as valuable antibacterial agents against Escherichia coli and Enterococcus faecalis.

18.
Molecules ; 24(19)2019 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-31597396

RESUMEN

Leaves of Vitis vinifera cv. Greco di Tufo, a precious waste made in the Campania Region (Italy), after vintage harvest, underwent reduction, lyophilization, and ultrasound-assisted maceration in ethanol. The alcoholic extract, as evidenced by a preliminary UHPLC-HR-MS analysis, showed a high metabolic complexity. Thus, the extract was fractionated, obtaining, among others, a fraction enriched in flavonol glycosides and glycuronides. Myricetin, quercetin, kaempferol, and isorhamnetin derivatives were tentatively identified based on their relative retention time and TOF-MS2 data. As the localization of saccharidic moiety in glycuronide compounds proved to be difficult due to the lack of well-established fragmentation pattern and/or the absence of characteristic key fragments, to obtain useful MS information and to eliminate matrix effect redundancies, the isolation of the most abundant extract's compound was achieved. HR-MS/MS spectra of the compound, quercetin-3-O-glucuronide, allowed us to thoroughly rationalize its fragmentation pattern, and to unravel the main differences between MS/MS behavior of flavonol glycosides and glycuronides. Furthermore, cytotoxicity assessment on the (poly)phenol rich fraction and the pure isolated compound was carried out using central nervous system cell lines. The chemoprotective effect of both the (poly)phenol fraction and quercetin-3-O-glucuronide was evaluated.


Asunto(s)
Cromatografía Líquida de Alta Presión , Flavonoles/química , Flavonoles/aislamiento & purificación , Hojas de la Planta/química , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem , Vitis/química , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología , Línea Celular Tumoral , Flavonoles/farmacología , Humanos , Estructura Molecular , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
19.
Food Funct ; 10(10): 6342-6350, 2019 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-31441483

RESUMEN

Ageritin is the first reported ribotoxin-like protein from basidiomycetes fungi. It can induce ribosomal integrity damage and translation block, and interferes with mitochondrial redox activity of some glioma and neuroblastoma cell lines. Herein, Ageritin has been investigated as a valuable neurotoxin towards either undifferentiated or retinoic acid (RA)-differentiated SH-SY5Y neuroblastoma cells showing a selective cell toxicity against undifferentiated cells. MTT and sulforhodamine B (SRB) assays highlighted that Ageritin markedly decreases the mitochondrial redox activity and viability of undifferentiated cells, meanwhile inducing evident morphological changes eliciting neuronal-like appearance in these cells. Data from lactate dehydrogenase release assay, cytofluorimetric analysis and caspase-3 enzymatic activity measurement suggest that Ageritin promotes cell death through a caspase-dependent apoptotic pathway. The Z-VAD-FMK caspase inhibitor was able to prevent this apoptotic pathway activation. Based on the interesting behaviour of Ageritin vs. SH-SY5Y cells, the development of a scale-up procedure to obtain the purified protein in larger amounts (yield 2.5 mg per 100 g) has been optimized.


Asunto(s)
Agaricales/química , Diferenciación Celular/efectos de los fármacos , Extractos Vegetales/farmacología , Ribonucleasas/farmacología , Apoptosis/efectos de los fármacos , Caspasa 3/genética , Caspasa 3/metabolismo , Línea Celular Tumoral , Humanos , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Ribonucleasas/química , Ribonucleasas/aislamiento & purificación
20.
J Pharm Biomed Anal ; 175: 112774, 2019 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-31336288

RESUMEN

Nowadays, the research for secondary metabolites with health promoting effects in countering or slowing-down chronic and degenerative diseases (e.g. cancer, cardiovascular, and neurodegenerative diseases) identify phenols and polyphenols, widespread and mostly copious in dietary plant sources, as beneficial for human health. These compounds, as intrinsically antioxidant, are claimed as nutraceuticals with preventive efficacy in offsetting oxidant species over-genesis in normal cells, and with the potential ability to halt or reverse oxidative stress-related diseases. In this context, pure (poly)phenols and/or their herbal/food complexes were found to exert both anti- and pro-oxidant activities, suggesting also a promising chemopreventive efficacy. In fact, different evidence further highlights their ability to induce apoptosis, growth arrest, DNA synthesis inhibition and/or modulation of signal transduction pathways. Indeed, a full understanding of the phenolic and polyphenolic composition of plant species, which still now represent their inestimable and worth exploring source, is an important challenge, which today can and must be favourably pursued in the consciousness that the bioactivity of a plant extract is always in its chemistry. To reach this purpose a number of new and advanced techniques are available for extraction, purification and structural identification purposes, but, taking into account how, when and where (poly)phenols are biosynthesized, their use must be highly rationalized. This is particularly true for mass spectrometry techniques which, although representing one of the most powerful tools and in continuous evolution in this era, often suffer from an automatism that does not give justice to the chemical goodness of a plant species and particularly those of nutraceutical interest. This review will deepen into polyphenol research, focusing on biosynthesis, analytical approaches for a conscious exploitability of nutraceutical plant extracts rich in antioxidant and anti-inflammatory polyphenols and/or pure isolated polyphenols.


Asunto(s)
Polifenoles/química , Animales , Antiinflamatorios/química , Antioxidantes/química , Suplementos Dietéticos , Humanos , Extractos Vegetales/química , Plantas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...