Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Ther Oncol ; 32(2): 200820, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38933492

RESUMEN

The prognosis for children with recurrent and/or refractory neuroblastoma (NB) is dismal. The receptor tyrosine kinase-like orphan receptor 1 (ROR1), which is highly expressed on the surface of NB cells, provides a potential target for novel immunotherapeutics. Anti-ROR1 chimeric antigen receptor engineered ex vivo expanded peripheral blood natural killer (anti-ROR1 CAR exPBNK) cells represent this approach. N-803 is an IL-15 superagonist with enhanced biological activity. In this study, we investigated the in vitro and in vivo anti-tumor effects of anti-ROR1 CAR exPBNK cells with or without N-803 against ROR1+ NB models. Compared to mock exPBNK cells, anti-ROR1 CAR exPBNK cells had significantly enhanced cytotoxicity against ROR1+ NB cells, and N-803 further increased cytotoxicity. High-dimensional analysis revealed that N-803 enhanced Stat5 phosphorylation and Ki67 levels in both exPBNK and anti-ROR1 CAR exPBNK cells with or without NB cells. In vivo, anti-ROR1 CAR exPBNK plus N-803 significantly (p < 0.05) enhanced survival in human ROR1+ NB xenografted NSG mice compared to anti-ROR1 CAR exPBNK alone. Our results provide the rationale for further development of anti-ROR1 CAR exPBNK cells plus N-803 as a novel combination immunotherapeutic for patients with recurrent and/or refractory ROR1+ NB.

2.
J Immunother Cancer ; 9(10)2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34599026

RESUMEN

BACKGROUND: Oncolytic virotherapy (OV) is an immunotherapy that incorporates viral cancer cell lysis with engagement of the recruited immune response against cancer cells. Pediatric solid tumors are challenging targets because they contain both an inert immune environment and a quiet antigenic landscape, making them more resistant to conventional OV approaches. Further complicating this, herpes simplex virus suppresses host gene expression during virotherapy infection. METHODS: We therefore developed a multimodal oncolytic herpes simplex virus (oHSV) that expresses ephrin A2 (EphA2), a shared tumor-associated antigen (TAA) expressed by many tumors to improve immune-mediated antitumor activity. We verified the virus genotypically and phenotypically and then tested it in an oHSV-resistant orthotopic model (including immunophenotypic analysis), in flank and in T cell-deficient mouse models. We then assessed the antigen-expressing virus in an unrelated peripheral tumor model that also expresses the shared tumor antigen and evaluated functional T-cell response from the treated mice. RESULTS: Virus-based EphA2 expression induces a robust acquired antitumor immune responses in both an oHSV-resistant murine brain and peripheral tumor model. Our new multimodal oncolytic virus (1) improves survival in viroimmunotherapy resistant tumors, (2) alters both the infiltrating and peripheral T-cell populations capable of suppressing tumor growth on rechallenge, and (3) produces EphA2-specific CD8 effector-like populations. CONCLUSIONS: Our results suggest that this flexible viral-based platform enables immune recognition of the shared TAA and improves the immune-therapeutic response, thus making it well suited for low-mutational load tumors.


Asunto(s)
Herpes Simple/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/virología , Viroterapia Oncolítica/métodos , Virus Oncolíticos/metabolismo , Animales , Modelos Animales de Enfermedad , Inmunoterapia/métodos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...