Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 9(15): 17114-17124, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38645370

RESUMEN

Copper indium sulfide (CIS) nanocrystals constitute a promising alternative to cadmium- and lead-containing nanoparticles. We report a synthetic method that yields hydrophilic, core-only CIS quantum dots, exhibiting size-dependent, copper-deficient composition and optical properties that are suitable for direct coupling to biomolecules and nonradiative energy transfer applications. To assist such applications, we complemented previous studies covering the femtosecond-picosecond time scale with the investigation of slower radiative and nonradiative processes on the nanosecond time scale, using both time-resolved emission and transient absorption. As expected for core particles, relaxation occurs mainly nonradiatively, resulting in low, size-dependent photoluminescence quantum yield. The nonradiative relaxation from the first excited band is wavelength-dependent with lifetimes between 25 and 150 ns, reflecting the size distribution of the particles. Approximately constant lifetimes of around 65 ns were observed for nonradiative relaxation from the defect states at lower energies. The photoluminescence exhibited a large Stokes shift. The band gap emission decays on the order of 10 ns, while the defect emission is further red-shifted, and the lifetimes are on the order of 100 ns. Both sets of radiative lifetimes are wavelength-dependent, increasing toward longer wavelengths. Despite the low radiative quantum yield, the aqueous solubility and long lifetimes of the defect states are compatible with the proposed role of CIS quantum dots as excitation energy donors to biological molecules.

2.
Nanotechnology ; 35(30)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38640903

RESUMEN

Inkjet printing (IJP) has become a versatile, cost-effective technology for fabricating organic and hybrid electronic devices. Heavy-metal-based quantum dots (HM QDs) play a significant role in these inkjet-printed devices due to their excellent optoelectrical properties. Despite their utility, the intrinsic toxicity of HM QDs limits their applications in commercial products. To address this limitation, developing alternative HM-free quantum dots (HMF QDs) that have equivalent optoelectronic properties to HM QD is a promising approach to reduce toxicity and environmental impact. This article comprehensively reviews HMF QD-based devices fabricated using IJP methods. The discussion includes the basics of IJP technology, the formulation of printable HMF QD inks, and solutions to the coffee ring effect. Additionally, this review briefly explores the performance of typical state-of-the-art HMF QDs and cutting-edge characterization techniques for QD inks and printed QD films. The performance of printed devices based on HMF QDs is discussed and compared with those fabricated by other techniques. In the conclusion, the persisting challenges are identified, and perspectives on potential avenues for further progress in this rapidly developing research field are provided.

3.
J Phys Chem C Nanomater Interfaces ; 126(6): 3235-3243, 2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35432690

RESUMEN

We present the characterization of the CTAB-oleate controlled synthesis of gold nanorods (AuNRs). Concentrations of key compounds in the synthetic system were varied in the presence of oleate, including HCl, borohydride, silver nitrate, and ascorbic acid. The longitudinal surface plasmon resonance peak was sensitive to changes in all concentrations. Reducing the concentration of Ag ions below 66 µM led to slower reaction kinetics and incomplete Au reduction. Variation of the ascorbic acid concentration revealed that oleate is responsible for around 44% of reduction of Au3+ to Au+ before nucleation in these experiments. Increasing the oleate concentration significantly slows the growth kinetics and leads to much longer synthesis times of above 12 h for reaction completion. These observations will enable the design of better methods of synthesizing of AuNRs using binary surfactants.

4.
Nanoscale Horiz ; 6(9): 676-695, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34264247

RESUMEN

Copper indium sulfide (CIS) quantum dots are ideal for bioimaging applications, by being characterized by high molar absorption coefficients throughout the entire visible spectrum, high photoluminescence quantum yield, high tolerance to the presence of lattice defects, emission tunability from the red to the near-infrared spectral region by changing their dimensions and composition, and long lifetimes (hundreds of nanoseconds) enabling time-gated detection to increase signal-to-noise ratio. The present review collects: (i) the most common procedures used to synthesize stable CIS QDs and the possible strategies to enhance their colloidal stability in aqueous environment, a property needed for bioimaging applications; (ii) their photophysical properties and parameters that affect the energy and brightness of their photoluminescence; (iii) toxicity and bioimaging applications of CIS QDs, including tumor targeting, time-gated detection and multimodal imaging, as well as theranostics. Future perspectives are analyzed in view of advantages and potential limitations of CIS QDs compared to most traditional QDs.


Asunto(s)
Indio , Puntos Cuánticos , Cobre , Luminiscencia , Sulfuros
5.
Acta Biomater ; 131: 519-531, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34144213

RESUMEN

Triangular Au nanoplates (TrAuNPls) possessing strong plasmonic properties can be used as photothermal agents in cancer therapy. However, the controlled preparation of such morphologies typically requires harsh synthetic conditions. Biomolecules offer an alternative route to developing biocompatible synthetic protocols. In particular, peptides offer a novel route for inorganic synthesis under ambient conditions. Herein, using the previously isolated peptide, ASHQWAWKWE, for Au nanoparticle (AuNP) synthesis, the conditions for preparing TrAuNPls via a one-pot synthetic process of mixing HAuCl4 and peptides at room temperature were investigated to effectively obtain particles possessing near-infrared absorbance for non-invasive optical diagnosis and phototherapy. By adjusting the peptide concentration, the size and property of TrAuNPls were controlled under neutral pH conditions. The synthesised particles showed potential as photothermal therapeutic agents in vitro. In addition, peptide characterisation using B3 derivatives revealed the importance of the third amino acid histidine in morphological regulation and potential circular Au nanoplates (AuNPl) synthesis with ASEQWAWKWE and ASAQWAWKWE peptides. These findings provide not only an easy and green synthetic method for TrAuNPls and circular AuNPls, but also some insight to help elucidate the regulation of peptide-based nanoparticle synthesis for use in cancer therapy. STATEMENT OF SIGNIFICANCE: Biological molecules have received increasing attention as a vehicle to synthesise inorganic materials with specific properties under ambient conditions; particularly, short peptides have the potential to control the synthesis of nanoscale materials with tailored functions. Here, the application of a previously isolated peptide was assessed in synthesising Au nanoparticles containing decahedral and triangular nanoplates with near-infrared absorbance. The size and absorbance peaks of the triangular nanoplates observed were peptide concentration-dependent. In addition, these fine-tuned triangular nanoplates exhibited potential as a phototherapeutic agent. Moreover, the peptide derivatives indicated the possibility of synthesising circular nanoplates. These findings may offer insight into development of new techniques for synthesising functional nanoparticles having biological applications using non-toxic molecules under mild conditions stituted in the original B3 peptide is underlined.


Asunto(s)
Oro , Nanopartículas del Metal , Péptidos , Fototerapia
6.
Small ; 17(13): e2006797, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33682366

RESUMEN

Gold nanorods (AuNRs) have attracted a great deal of attention due to their potential for use in a wide range of biomedical applications. However, their production typically requires the use of the relatively toxic cationic surfactant cetyltrimethylammonium bromide (CTAB) leading to continued demand for protocols to detoxify them for in vivo applications. In this study, a robust and facile protocol for the displacement of CTAB from the surface of AuNRs using phospholipids is presented. After the displacement, CTAB is not detectable by NMR spectroscopy, surface-enhanced Raman spectroscopy, or using pH-dependent ζ-potential measurements. The phospholipid functionalized AuNRs demonstrated superior stability and biocompatibility (IC50  > 200 µg mL-1 ) compared to both CTAB and polyelectrolyte functionalized AuNRs and are well tolerated in vivo. Furthermore, they have high near-infrared (NIR) absorbance and produce large amounts of heat under NIR illumination, hence such particles are well suited for plasmonic medical applications.


Asunto(s)
Oro , Nanotubos , Cetrimonio , Fosfolípidos , Espectrometría Raman
7.
Nanotechnology ; 2020 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-33227716

RESUMEN

This work reports the design, manufacturing and numerical simulation approach of a 6-pixel (4.5mm2/pixel) electroluminescent quantum dot light emitting device (QLED) based on CuInS2/ZnS quantum dots as an active layer. Following a conventional thin-film deposition multilayer approach, the QLED device was fabricated. In addition, the electrical I-V curve was measured for each pixel independently, observing how the fabrication process and layer thickness have an influence in the shape of the plot. This experimental device fabricated, enabled us to create a computational model for the QLED based on the Transfer Hamiltonian approach to calculate the current density J(mA/cm2), the band diagram of the system, and the accumulated charge distribution. Besides, it is worth highlighting that the simulator allows the possibility to study the influence of different parameters of the QLED structure like the junction capacitance between the distinct multilayer set. Specifically, we found that Anode-HIL interface capacitance has a greater influence in the I-V plot shape. That junction capacitance plays an important role in the current increase and the QLED turn-on value when a forward voltage is applied to the device. Thanks to the simulator, that influence could be put under control by the selection of the optimal thickness and transport layers during the experimental fabrication process. This work is remarkable since it achieves to fit simulation and experiment results in an accurate way for electroluminescent QLED devices; particularly the simulation of the device current, which is critical when designing the automotive electronics to control these new nanotechnology lighting devices in the future.

8.
Bioconjug Chem ; 31(5): 1400-1407, 2020 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-32281783

RESUMEN

Explosive compounds, such as 2,4,6-trinitrotoluene (TNT), pose a great concern in terms of both global public security and environmental protection. There are estimated to be hundreds of TNT contaminated sites all over the world, which will affect the health of humans, wildlife, and the ecosystem. Clearly, the ability to detect TNT in soils, water supplies, and wastewater is important for environmental studies but also important for security, such as in ports and boarders. However, conventional spectroscopic detection is not practical for on-site sensing because it requires sophisticated equipment and trained personnel. We report a rapid and simple chemical sensor for TNT by using TNT binding peptides which are conjugated to fluorescent CdTe/CdS quantum dots (QDs). QDs were synthesized in the aqueous phase, and the peptide was attached directly to the surface of the QDs by using thiol groups. The fluorescent emission from the QDs was quenched in response to the addition of TNT. The response could even be observed by the naked eye. The limit of detection from fluorescence spectroscopic measurement was estimated to be approximately 375 nM. In addition to the rapid response (within a few seconds), selective detection was demonstrated. We believe this label-free chemical sensor contributes to progress for the on-site explosive sensing.


Asunto(s)
Técnicas de Química Analítica/instrumentación , Contaminantes Ambientales/análisis , Péptidos/química , Puntos Cuánticos/química , Trinitrotolueno/análisis , Compuestos de Cadmio/química , Contaminantes Ambientales/química , Colorantes Fluorescentes/química , Sulfuros/química , Telurio/química , Factores de Tiempo , Trinitrotolueno/química
9.
Biosens Bioelectron ; 153: 112030, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-31989939

RESUMEN

A novel peptide-based three-dimensional probe called "peptide matrix," inspired by the antibody paratope region, was fabricated on a surface plasmon resonance (SPR) sensor chip to enhance the sensitivity of detecting the explosive 2,4,6-trinitrotoluene (TNT). Although peptide aptamer is an attractive candidate for a molecular recognition probe because of its ease of synthesis and chemical stability, it still has difficulty in applying to highly sensitive (i.e. parts-per-billion (ppb) or sub-ppb level) detections. Thus, we developed the concept of peptide matrix structure, which is constructed by consecutive disulfide bond formation between a large number of peptide fragments. This robust three-dimensional structure displays multiple binding sites which can efficiently associate with each TNT molecule. The peptide matrix lowered the dissociation constant (KD) by two orders of magnitude compared to the linear peptide aptamer, estimating KD as 10.1 nM, which is the lowest concentration reported by using peptide-based TNT probe. Furthermore, the concentration limit of detection of peptide matrix modified SPR sensor was 0.62 ppb, and hence comparable to single-chain variable fragment (scFv)-based TNT sensors. To our knowledge, this is the first report demonstrating peptide matrix fabrication and its application for small explosive molecule detection. This peptide matrix-based approach, which has the advantage of simple synthesis and high sensitivity, will be applicable to many other small-molecule label-free detections.


Asunto(s)
Anticuerpos Monoclonales/química , Aptámeros de Péptidos/química , Sustancias Explosivas/análisis , Péptidos/química , Resonancia por Plasmón de Superficie/métodos , Trinitrotolueno/análisis , Transportadoras de Casetes de Unión a ATP , Secuencia de Aminoácidos , Unión Competitiva , Cisteína/química , Disulfuros/química , Diseño de Equipo , Límite de Detección , Estructura Molecular , Técnicas de Síntesis en Fase Sólida , Propiedades de Superficie , Termodinámica
10.
RSC Adv ; 10(14): 8218-8223, 2020 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35497846

RESUMEN

Quantum dots (QDs) are promising nanomaterials due to their unique photophysical properties. For them to be useful in biological applications, the particle surface generally needs to be conjugated to biological molecules, such as antibodies. In this study, we screened CdTe/CdS QD-binding peptides from a phage display library as linkers for simple and bio-friendly QD modification. Among five QD-binding peptide candidates, a series of truncated peptides designed from two high-affinity peptides were subjected to an array-based binding assay with QDs to assess their functional core sequences and characteristics. Linking these isolated, shortened peptides (PWSLNR and SGVYK) with an antibody-binding peptide (NKFRGKYK) created dual-functional peptides that are capable of QD surface functionalisation by antibodies. Consequently, the dual-functional peptides could mediate anti-CD9 antibody functionalisation onto CdTe/CdS QD surface; CD9 protein imaging of cancer cells was also demonstrated. Our proposed peptides offer an effective vehicle for QD surface functionalisation in biological applications.

11.
Nanotechnology ; 31(13): 134005, 2020 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-31810073

RESUMEN

Combining abiotic photosensitisers such as quantum dots (QDs) with non-photosynthetic bacteria presents an intriguing concept into the design of artificial photosynthetic organisms and solar-driven fuel production. Shewanella oneidensis MR-1 (MR-1) is a versatile bacterium concerning respiration, metabolism and biocatalysis, and is a promising organism for artificial photosynthesis as the bacterium's synthetic and catalytic ability provides a potential system for bacterial biohydrogen production. MR-1's hydrogenases are present in the periplasmatic space. It follows that for photoenergised electrons to reach these enzymes, QDs will need to be able to enter the periplasm, or electrons need to enter the periplasm via the Mtr pathway that is responsible for MR-1's extracellular electron transfer ability. As a step towards this goal, various QDs were tested for their photo-reducing potential, nanotoxicology and further for their interaction with MR-1. CdTe/CdS/TGA, CdTe/CdS/Cysteamine, a commercial, negatively charged CdTe and CuInS2/ZnS/PMAL QDs were examined. The photoreduction potential of the QDs was confirmed by measuring their ability to photoreduce methyl viologen with different sacrificial electron donors. The commercial CdTe and CuInS2/ZnS/PMAL QDs showed no toxicity towards MR-1 as evaluated by a colony-forming units method and a fluorescence viability assay. Only the commercial negatively charged CdTe QDs showed good interaction with MR-1. With transmission electron microscopy, QDs were observed both in the cytoplasm and periplasm. These results inform on the possibilities and bottlenecks when developing bionanotechnological systems for the photosynthetic production of biohydrogen by MR-1.


Asunto(s)
Antibacterianos/toxicidad , Hidrogenasas/antagonistas & inhibidores , Puntos Cuánticos/toxicidad , Shewanella/enzimología , Antibacterianos/química , Proteínas Bacterianas/antagonistas & inhibidores , Compuestos de Cadmio/química , Viabilidad Microbiana/efectos de los fármacos , Microscopía Electrónica de Transmisión , Periplasma/efectos de los fármacos , Periplasma/enzimología , Fotosíntesis/efectos de los fármacos , Puntos Cuánticos/química , Shewanella/efectos de los fármacos , Telurio/química , Compuestos de Zinc/química
12.
Adv Sci (Weinh) ; 6(21): 1900911, 2019 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-31728277

RESUMEN

2D metal nanomaterials offer exciting prospects in terms of their properties and functions. However, the ambient aqueous synthesis of atomically-thin, 2D metallic nanomaterials represents a significant challenge. Herein, freestanding and atomically-thin gold nanosheets with a thickness of only 0.47 nm (two atomic layers thick) are synthesized via a one-step aqueous approach at 20 °C, using methyl orange as a confining agent. Owing to the high surface-area-to-volume ratio, abundance of unsaturated atoms exposed on the surface and large interfacial areas arising from their ultrathin 2D nature, the as-prepared Au nanosheets demonstrate excellent catalysis performance in the model reaction of 4-nitrophenol reduction, and remarkable peroxidase-mimicking activity, which enables a highly sensitive colorimetric sensing of H2O2 with a detection limit of 0.11 × 10-6 m. This work represents the first fabrication of freestanding 2D gold with a sub-nanometer thickness, opens up an innovative pathway toward atomically-thin metal nanomaterials that can serve as model systems for inspiring fundamental advances in materials science, and holds potential across a wide region of applications.

13.
Faraday Discuss ; 215(0): 26-38, 2019 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-30969289

RESUMEN

The high quantum efficiency of natural photosynthesis has inspired chemists for solar fuel synthesis. In photosynthesis, charge recombination in photosystems is minimized by efficient charge separation across the thylakoid membrane. Building on our previous bioelectrochemical studies of electron transfer between a light-harvesting nanoparticle (LHNP) and the decahaem subunit MtrC, we demonstrate photo-induced electron transfer through the full transmembrane MtrCAB complex in liposome membranes. Successful photoelectron transfer is demonstrated by the decomposition of a redox dye, Reactive Red 120 (RR120), encapsulated in MtrCAB proteoliposomes. The photoreduction rates are found to be dependent on the identity of the external LHNPs, specifically, dye-sensitized TiO2, amorphous carbon dots (a-CD) and graphitic carbon dots with core nitrogen doping (g-N-CDs). Agglomeration or aggregation of TiO2 NPs likely reduces the kinetics of RR120 reductive decomposition. In contrast, with the dispersed a-CD and g-N-CDs, the kinetics of the RR120 reductive decomposition are observed to be faster with the MtrCAB proteoliposomes and we propose that this is due to enhancement in the charge-separated state. Thus, we show a proof-of-concept for using MtrCAB as a lipid membrane-spanning building block for compartmentalised photocatalysis that mimics photosynthesis. Future work is focused on incorporation of fuel generating redox catalysts in the MtrCAB proteoliposome lumen.


Asunto(s)
Proteínas Bacterianas/metabolismo , Fotosíntesis , Proteínas Bacterianas/química , Biocatálisis , Transporte de Electrón , Shewanella/química , Shewanella/metabolismo
14.
Br J Radiol ; 91(1092): 20180325, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30179039

RESUMEN

A multi-disciplinary cooperative for nanoparticle-enhanced radiotherapy (NERT) has been formed to review the current status of the field and identify key stages towards translation. Supported by the Colorectal Cancer Healthcare Technologies Cooperative, the cooperative comprises a diverse cohort of key contributors along the translation pathway including academics of physics, cancer and radio-biology, chemistry, nanotechnology and clinical trials, clinicians, manufacturers, industry, standards laboratories, policy makers and patients. Our aim was to leverage our combined expertise to devise solutions towards a roadmap for translation and commercialisation of NERT, in order to focus research in the direction of clinical implementation, and streamline the critical pathway from basic science to the clinic. A recent meeting of the group identified barriers to and strategies for accelerated clinical translation. This commentary reports the cooperative's recommendations. Particular emphasis was given to more standardised and cohesive research methods, models and outputs, and reprioritised research drivers including patient quality of life following treatment. Nanoparticle design criteria were outlined to incorporate scalability of manufacture, understanding and optimisation of biological mechanisms of enhancement and in vivo fate of nanoparticles, as well as existing design criteria for physical and chemical enhancement. In addition, the group aims to establish a long-term and widespread international community to disseminate key findings and create a much-needed cohesive body of evidence necessary for commercial and clinical translation.


Asunto(s)
Nanopartículas , Radioterapia/métodos , Humanos
15.
Nanotechnology ; 2018 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-29873295

RESUMEN

Two errors have been found in paragraph 2 of section 2.2. An incorrect volume for the amount of AgNO3 solution added and the order in which solutions were added is wrong.

16.
Nanotechnology ; 29(13): 135601, 2018 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-29355832

RESUMEN

High purity gold nanorods (AuNRs) with tunable morphology have been synthesized through a binary-surfactant seedless method, which enables the formation of monocrystalline AuNRs with diameters between 7 and 35 nm. The protocol has high shape yield and monodispersity, demonstrating good reproducibility and scalability allowing synthesis of batches 0.5 l in volume. Morphological control has been achieved through the adjustment of the molar concentrations of cetyltrimethylammonium bromide and sodium oleate in the growth solution, providing fine tuning of the optical scattering and absorbance properties of the AuNRs across the visible and NIR spectrum. Sodium oleate was found to provide greatest control over the aspect ratio (and hence optical properties) with concentration changes between 10 and 23 mM leading to variation in the aspect ratio between 2.8 and 4.8. Changes in the geometry of the end-caps were also observed as a result of manipulating the two surfactant concentrations.

17.
Chem Sci ; 8(1): 567-576, 2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-28451203

RESUMEN

Iron has been used previously in water decontamination, either unsupported or supported on clays, polymers, carbons or ceramics such as silica. However, the reported synthesis procedures are tedious, lengthy (involving various steps), and either utilise or produce toxic chemicals. Herein, the use of a simple, rapid, bio-inspired green synthesis method is reported to prepare, for the first time, a family of iron supported on green nanosilica materials (Fe@GN) to create new technological solutions for water remediation. In particular, Fe@GN were employed for the removal of arsenate ions as a model for potentially toxic elements in aqueous solution. Several characterization techniques were used to study the physical, structural and chemical properties of the new Fe@GN. When evaluated as an adsorption platform for the removal of arsenate ions, Fe@GN exhibited high adsorption capacity (69 mg of As per g of Fe@GN) with superior kinetics (reaching ∼35 mg As per g sorbent per hr) - threefold higher than the highest removal rates reported to date. Moreover, a method was developed to regenerate the Fe@GN allowing for a full recovery and reuse of the adsorbent in subsequent extractions; strongly highlighting the potential technological benefits of these new green materials.

20.
Nanoscale ; 8(36): 16157-61, 2016 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-27465708

RESUMEN

The origin of photoluminescence in copper indium sulfide (CIS) quantum dots (Qdots) has previously been ascribed to a donor-acceptor pair (DAP) recombination, with a crystal lattice defect implicated as the origin of the donor state. In this study, electron energy-loss spectroscopy (EELS) was used to observe defect-rich compositional domains within individual CIS Qdots, supporting a model of defect-state-mediated photoluminescence for these particles, and identifying them as an ideal model system for future study of lattice defects on Qdot properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA