Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 14(1)2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38202533

RESUMEN

Solid-solid phase-change materials have great potential for developing compact and low-cost thermal storage systems. The solid-state nature of these materials enables the design of systems analogous to those based on natural rocks but with an extraordinarily higher energy density. In this scenario, the evaluation and improvement of the mechanical and thermophysical properties of these solid-solid PCMs are key to exploiting their full potential. In this study, LiNaSO4-based composites, comprising porous MgO and expanded graphite (EG) as the dispersed phases and LiNaSO4 as the matrix, have been prepared with the aim of enhancing the thermophysical and mechanical properties of LiNaSO4. The characteristic structure of MgO and the high degree of crystallinity of the EG600 confer on the LiNaSO4 sample mechanical stability, which leads to an increase in the Young's modulus (almost three times higher) compared to the pure LiNaSO4 sample. These materials are proposed as a suitable candidate for thermal energy storage applications at high temperatures (400-550 °C). The addition of 5 wt.% of MgO or 5% of EG had a minor influence on the solid-solid phase change temperature and enthalpy; however, other thermal properties such as thermal conductivity or specific heat capacity were increased, extending the scope of PCMs use.

2.
Chem Sci ; 13(34): 10119-10128, 2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36128243

RESUMEN

Hyperfluorescence (HF), a relatively new phenomenon utilizing the transfer of excitons between two luminophores, requires careful pairwise tuning of molecular energy levels and is proposed to be the crucial step towards the development of new, highly effective OLED systems. To date, barely few HF yellow emitters with desired narrowband emission but moderate external quantum efficiency (EQE < 20%) have been reported. This is because a systematic strategy embracing both Förster resonance energy transfer (FRET) and triplet to singlet (TTS) transition as complementary mechanisms for effective exciton transfer has not yet been proposed. Herein, we present a rational approach, which allows, through subtle structural modification, a pair of compounds built from the same donor and acceptor subunits, but with varied communication between these ambipolar fragments, to be obtained. The TADF-active dopant is based on a naphthalimide scaffold linked to the nitrogen of a carbazole moiety, which through the introduction of an additional bond leads not only to π-cloud enlargement, but also rigidifies and inhibits the rotation of the donor. This structural change prevents TADF, and guides bandgaps and excited state energies to simultaneously pursue FRET and TTS processes. New OLED devices utilizing the presented emitters show excellent external quantum efficiency (up to 27%) and a narrow full width at half maximum (40 nm), which is a consequence of very good alignment of energy levels. The presented design principles prove that only a minor structural modification is needed to obtain commercially applicable dyes for HF OLED devices.

3.
Beilstein J Org Chem ; 18: 459-468, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35558649

RESUMEN

A new thermally activated delayed fluorescence (TADF) compound based on a donor-acceptor (D-A) architecture (D = phenoxazine; A = dibenzo[a,j]phenazine) has been developed, and its photophysical properties were characterized. The D-A compound is applicable as an emitting material for efficient organic light-emitting diodes (OLEDs), and its external quantum efficiency (EQE) exceeds the theoretical maximum of those with prompt fluorescent emitters. Most importantly, comparative study of the D-A molecule and its D-A-D counterpart from the viewpoints of the experiments and theoretical calculations revealed the effect of the number of the electron donor on the thermally activated delayed fluorescent behavior.

4.
Chemistry ; 28(43): e202200826, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35579394

RESUMEN

Previous work has reported the synthesis of donor-acceptor-donor molecules based on dibenzophenazine acceptor group, presenting thermally activated delayed fluorescent (TADF) properties and their application in the assembly of highly efficient electroluminescent devices. Herein, we focus on the characterisation of charge carrier species through UV-Vis-NIR spectroelectrochemical and potentiostatic EPR techniques, in addition to the investigation of electropolymerisation properties of some compounds depicted in this study. The promising electrochromic features of both small molecules and conjugated polymers led to the assembly and investigation of electrochromic devices, evidencing the materials' versatility, applied in such different approaches as electrochromic windows and electroluminescent devices. Furthermore, the assembled OLEDs provided high efficiencies, with small roll-off, EQEs up to 20.5 % and luminance values up to 85 000 cd/m2 .

5.
Angew Chem Int Ed Engl ; 61(27): e202202232, 2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35348258

RESUMEN

Although bowl-shaped N-pyrrolic polycyclic aromatic hydrocarbons (PAHs) can achieve excellent electron-donating ability, their application for optoelectronics is hampered by typically low photoluminescence quantum yields (PLQYs). To address this issue, we report the synthesis and characterization of a series of curved and fully conjugated nitrogen-doped PAHs. Through structural modifications to the electron-accepting moiety, we are able to switch the mechanism of luminescence between thermally activated delayed fluorescence (TADF) and room-temperature phosphorescence (RTP), and to tune the overall PLQY in the range from 9 % to 86 %. As a proof of concept, we constructed solid-state organic light-emitting diode (OLED) devices, which has not been explored to date in the context of concave N-doped systems being TADF/RTP emitters. The best-performing dye, possessing a peripheral trifluoromethyl group adjacent to the phenazine acceptor, exhibits yellow to orange emission with a maximum external quantum efficiency (EQE) of 12 %, which is the highest EQE in a curved D-A embedded N-PAH to date.

6.
Chemistry ; 27(53): 13390-13398, 2021 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-34314537

RESUMEN

Novel electron donor-acceptor-donor (D-A-D) compounds comprising dibenzo[a,j]phenazine as the central acceptor core and two 7-membered diarylamines (iminodibenzyl and iminostilbene) as the donors have been designed and synthesized. Investigation of their physicochemical properties revealed the impact of C2 insertion into well-known carbazole electron donors on the properties of previously reported twisted dibenzo[a,j]phenazine-core D-A-D triads. Slight structural modification caused a drastic change in conformational preference, allowing unique photophysical behavior of dual emission derived from room-temperature phosphorescence and triplet-triplet annihilation. Furthermore, electrochemical analysis suggested sigma-dimer formation and electrochemical polymerization on the electrode. Quantum chemical calculations also rationalized the experimental results.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...