Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Immunol ; 209(8): 1574-1585, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-36165184

RESUMEN

Neutrophils are critical for mediating inflammatory responses. Inhibiting neutrophil recruitment is an attractive approach for preventing inflammatory injuries, including myocardial ischemia-reperfusion (I/R) injury, which exacerbates cardiomyocyte death after primary percutaneous coronary intervention in acute myocardial infarction. In this study, we found out that a neutrophil exocytosis inhibitor Nexinhib20 inhibits not only exocytosis but also neutrophil adhesion by limiting ß2 integrin activation. Using a microfluidic chamber, we found that Nexinhib20 inhibited IL-8-induced ß2 integrin-dependent human neutrophil adhesion under flow. Using a dynamic flow cytometry assay, we discovered that Nexinhib20 suppresses intracellular calcium flux and ß2 integrin activation after IL-8 stimulation. Western blots of Ras-related C3 botulinum toxin substrate 1 (Rac-1)-GTP pull-down assays confirmed that Nexinhib20 inhibited Rac-1 activation in leukocytes. An in vitro competition assay showed that Nexinhib20 antagonized the binding of Rac-1 and GTP. Using a mouse model of myocardial I/R injury, Nexinhib20 administration after ischemia and before reperfusion significantly decreased neutrophil recruitment and infarct size. Our results highlight the translational potential of Nexinhib20 as a dual-functional neutrophil inhibitory drug to prevent myocardial I/R injury.


Asunto(s)
Antígenos CD18 , Neutrófilos , Animales , Antígenos CD18/metabolismo , Calcio/metabolismo , Adhesión Celular , Guanosina , Guanosina Trifosfato/metabolismo , Humanos , Interleucina-8/metabolismo , Ratones , Ratones Endogámicos C57BL , Neutrófilos/metabolismo , Polifosfatos , Proteína de Unión al GTP rac1/metabolismo
2.
Arterioscler Thromb Vasc Biol ; 42(10): 1229-1241, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35861069

RESUMEN

BACKGROUND: Regulation of vascular permeability is critical to maintaining tissue metabolic homeostasis. VEGF (vascular endothelial growth factor) is a key stimulus of vascular permeability in acute and chronic diseases including ischemia reperfusion injury, sepsis, and cancer. Identification of novel regulators of vascular permeability would allow for the development of effective targeted therapeutics for patients with unmet medical need. METHODS: In vitro and in vivo models of VEGFA-induced vascular permeability, pathological permeability, quantitation of intracellular calcium release and cell entry, and phosphatidylinositol 4,5-bisphosphate levels were evaluated with and without modulation of PLC (phospholipase C) ß2. RESULTS: Global knock-out of PLCß2 in mice resulted in blockade of VEGFA-induced vascular permeability in vivo and transendothelial permeability in primary lung endothelial cells. Further work in an immortalized human microvascular cell line modulated with stable knockdown of PLCß2 recapitulated the observations in the mouse model and primary cell assays. Additionally, loss of PLCß2 limited both intracellular release and extracellular entry of calcium following VEGF stimulation as well as reduced basal and VEGFA-stimulated levels of phosphatidylinositol 4,5-bisphosphate compared to control cells. Finally, loss of PLCß2 in both a hyperoxia-induced lung permeability model and a cardiac ischemia:reperfusion model resulted in improved animal outcomes when compared with wild-type controls. CONCLUSIONS: The results implicate PLCß2 as a key positive regulator of VEGF-induced vascular permeability through regulation of both calcium flux and phosphatidylinositol 4,5-bisphosphate levels at the cellular level. Targeting of PLCß2 in a therapeutic setting may provide a novel approach to regulating vascular permeability in patients.


Asunto(s)
Permeabilidad Capilar , Fosfatidilinositol 4,5-Difosfato , Fosfolipasa C beta , Mucosa Respiratoria , Factor A de Crecimiento Endotelial Vascular , Animales , Calcio/metabolismo , Permeabilidad Capilar/genética , Permeabilidad Capilar/fisiología , Células Endoteliales/metabolismo , Humanos , Pulmón/metabolismo , Ratones , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfolipasa C beta/genética , Fosfolipasa C beta/metabolismo , Fosfolipasa C beta/fisiología , Mucosa Respiratoria/metabolismo
3.
Exp Neurol ; 329: 113308, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32289314

RESUMEN

Stroke remains a leading cause of disability in the United States. Despite recent advances, interventions to reduce damage and enhance recovery after stroke are lacking. P2X4R, a receptor for adenosine triphosphate (ATP), regulates activation of myeloid immune cells (infiltrating monocytes/macrophages and brain-resident microglia) after stroke injury. However, over-stimulation of P2X4Rs due to excessive ATP release from dying or damaged neuronal cells can contribute to ischemic injury. Therefore, we pharmacologically inhibited P2X4R to limit the over-stimulated myeloid cell immune response and improve both acute and chronic stroke recovery. We subjected 8-12-week-old male and female wild type mice to a 60 min right middle cerebral artery occlusion (MCAo) followed by 3 or 30 days of reperfusion. We performed histological, RNA sequencing, behavioral (sensorimotor, anxiety, and depressive), and biochemical (Evans blue dye extravasation, western blot, quantitative PCR, and flow cytometry) analyses to determine the acute (3 days after MCAo) and chronic (30 days after MCAo) effects of P2X4R antagonist 5-BDBD (1 mg/kg P.O. daily x 3 days post 4 h of MCAo) treatment. 5-BDBD treatment significantly (p < .05) reduced infarct volume, neurological deficit (ND) score, levels of cytokine interleukin-1 beta (IL-1ß) and blood brain barrier (BBB) permeability in the 3-day group. Chronically, 5-BDBD treatment also conferred progressive recovery (p < .05) of motor balance and coordination using a rotarod test, as well as reduced anxiety-like behavior over 30 days. Interestingly, depressive-type behavior was not observed in mice treated with 5-BDBD for 3 days. In addition, flow cytometric analysis revealed that 5-BDBD treatment decreased the total number of infiltrated leukocytes, and among those infiltrated leukocytes, pro-inflammatory cells of myeloid origin were specifically reduced. 5-BDBD treatment reduced the cell surface expression of P2X4R in flow cytometry-sorted monocytes and microglia without reducing the total P2X4R level in brain tissue. In summary, acute P2X4R inhibition protects against ischemic injury at both acute and chronic time-points after stroke. Reduced numbers of infiltrating pro-inflammatory myeloid cells, decreased surface P2X4R expression, and reduced BBB disruption are likely its mechanism of neuroprotection and neuro-rehabilitation.


Asunto(s)
Benzodiazepinonas/uso terapéutico , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/prevención & control , Neuroprotección/fisiología , Fármacos Neuroprotectores/uso terapéutico , Antagonistas del Receptor Purinérgico P2X/uso terapéutico , Animales , Benzodiazepinonas/farmacología , Relación Dosis-Respuesta a Droga , Femenino , Células HEK293 , Humanos , Accidente Cerebrovascular Isquémico/rehabilitación , Masculino , Ratones , Ratones Endogámicos C57BL , Neuroprotección/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Antagonistas del Receptor Purinérgico P2X/farmacología , Receptores Purinérgicos P2X4/metabolismo
4.
Brain Behav Immun ; 66: 302-312, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28751018

RESUMEN

INTRODUCTION: Acute ischemic injury leads to severe neuronal loss. One of the key mechanisms responsible for this effect is inflammation, which is characterized by the activation of myeloid cells, including resident microglia and infiltrating monocytes/macrophages. P2X4 receptors (P2X4Rs) present on these immune cells modulate the inflammatory response. For example, excessive release of adenosine triphosphate during acute ischemic stroke triggers stimulation of P2X4Rs, leading to myeloid cell activation and proliferation and further exacerbating post-ischemic inflammation. In contrast, during recovery P2X4Rs activation on microglia leads to the release of brain-derived neurotrophic factor (BDNF), which alleviate depression, maintain synaptic plasticity and hasten post-stroke behavioral recovery. Therefore, we hypothesized that deletion of the P2X4R specifically from myeloid cells would have differential effects on acute versus chronic recovery following stroke. METHODS: We subjected global or myeloid-specific (MS) P2X4R knock-out (KO) mice and wild-type littermates of both sexes to right middle cerebral artery occlusion (60min). We performed histological, behavioral (sensorimotor and depressive), and biochemical (quantitative PCR and flow cytometry) analyses to determine the acute (three days after occlusion) and chronic (30days after occlusion) effects of receptor deletion. RESULTS: Global P2X4R deletion led to reduced infarct size in both sexes. In MS P2X4R KO mice, only females showed reduced infarct size, an effect that did not change with ovariectomy. MS P2X4R KO mice of both sexes showed swift recovery from sensorimotor deficits during acute recovery but exhibited a more pronounced post-stroke depressive behavior phenotype that was independent of infarct size. Quantitative PCR analysis of whole cell lysate as well as flow-sorted myeloid cells from the perilesional cortex showed increased cellular interleukin 1 beta (IL-1ß), interleukin 6 (IL-6), and tumor necrosis factor alpha (TNF-α) mRNA levels but reduced plasma levels of these cytokines in MS P2X4R KO mice after stroke. The expression levels of BDNF and other depression-associated genes were reduced in MS P2X4R KO mice after stroke. CONCLUSIONS: P2X4R deletion protects against stroke acutely but predisposes to depression-like behavior chronically after stroke. Thus, a time-sensitive approach should be considered when targeting P2X4Rs after stroke.


Asunto(s)
Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Encéfalo/metabolismo , Depresión/complicaciones , Receptores Purinérgicos P2X4/fisiología , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/patología , Animales , Conducta Animal , Encéfalo/patología , Isquemia Encefálica/complicaciones , Citocinas/metabolismo , Depresión/genética , Femenino , Mediadores de Inflamación/metabolismo , Masculino , Ratones , Ratones Noqueados , Microglía/patología , Fenotipo , ARN Mensajero/metabolismo , Receptores Purinérgicos P2X4/genética , Receptores Purinérgicos P2X4/metabolismo , Recuperación de la Función , Accidente Cerebrovascular/complicaciones
5.
J Cell Physiol ; 204(1): 45-50, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15605392

RESUMEN

As the only cell in cartilage responsible for matrix synthesis, the chondrocyte's viability is crucial to healthy tissue. It must tolerate stresses from both mechanical and cellular sources. This study examines the endoplasmic reticulum (ER) stress response in chondrocytes after exposure to IL-1beta, nitric oxide, or tunicamycin in order to determine whether this form of stress causes cell death. Cultures of the immortalized human juvenile costal chondrocyte cell line, C-28/I2, were treated with IL-1beta, S-nitroso-N-acetylpenicillamine (SNAP), and tunicamycin. Increasing intracellular nitric oxide levels by SNAP treatment or inhibiting protein folding in the ER lumen by tunicamycin induced the ER stress response as evidenced by increased protein and gene expression of GADD153 as well as PERK and eIF2-alpha phosphorylation, and resulted in apoptosis. IL-1beta treatment induced PERK and eIF2-alpha phosphorylation, but not GADD153 expression or apoptosis. The ER stress signaling pathway of IL-1beta involved iNOS because blocking its expression, inhibited ER stress gene expression. Therefore, inducing the ER stress response in chondrocytes results in divergent responses depending on the agent used. Even though IL-1beta, a common proinflammatory cytokine, induces the ER stress response, it is not proapoptotic to chondrocytes. On the other hand, exposure to high levels of intracellular nitric oxide induce chondrocyte apoptosis as part of the ER stress response.


Asunto(s)
Antibacterianos/farmacología , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Interleucina-1/farmacología , Óxido Nítrico/metabolismo , Tunicamicina/farmacología , Factor de Transcripción Activador 4 , Agrecanos , Apoptosis/efectos de los fármacos , Proteínas Potenciadoras de Unión a CCAAT/genética , Línea Celular Transformada , Condrocitos/citología , Colágeno Tipo II/genética , Retículo Endoplásmico/efectos de los fármacos , Chaperón BiP del Retículo Endoplásmico , Factor 2 Eucariótico de Iniciación/metabolismo , Proteínas de la Matriz Extracelular/genética , Expresión Génica/efectos de los fármacos , Proteínas de Choque Térmico/genética , Humanos , Lectinas Tipo C , Chaperonas Moleculares/genética , Donantes de Óxido Nítrico/farmacología , Óxido Nítrico Sintasa/metabolismo , Óxido Nítrico Sintasa de Tipo II , Fosforilación , Proteoglicanos/genética , S-Nitroso-N-Acetilpenicilamina/farmacología , Factor de Transcripción CHOP , Factores de Transcripción/genética , eIF-2 Quinasa/metabolismo
6.
J Cell Biochem ; 90(3): 592-607, 2003 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-14523993

RESUMEN

Nascent proteins translated and processed in the endoplasmic reticulum (ER) sometimes contain intrinsic signals for ER retention or ER retrieval. These signals are usually a few amino acids in length, and if alanine modifications are made within these sequences, normal transit patterns of the nascent protein frequently change. The purpose of this study was to determine whether two alanines juxtaposed to the first globular domain of aggrecan's core protein affect its transit in Chinese hamster ovary (CHO) cells. Results show that two alanines juxtaposed to the first globular domain (G1AA) minimized secretion of the protein. However, transgenic proteins with juxtaposed glutamate-phenylalanine (G1EF) or no additional amino acids (G1) were still secreted. GFP-tagged G1AA localized in the lumen of the ER but not in the Golgi. In contrast, a portion of GFP-tagged G1EF and G1 did appear in the Golgi compartment. More importantly, unique and striking accumulations of G1EF and G1 transgenic proteins were seen in large dilated regions of the ER cisternae, reminiscent of accumulations seen in alpha1-antitrypsin deficiency disease. G1AA transgenic proteins did not form these vesicles but were diffusely distributed throughout the ER lumen. These results indicate that just two juxtaposed alanines can profoundly affect a large globular protein's intracellular localization.


Asunto(s)
Alanina/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas de la Matriz Extracelular , Aparato de Golgi/metabolismo , Proteoglicanos/metabolismo , Agrecanos , Animales , Secuencia de Bases , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Compartimento Celular/fisiología , Membrana Celular/metabolismo , Proteína Coat de Complejo I/metabolismo , Cricetinae , Cricetulus , Humanos , Lectinas Tipo C , Microscopía Fluorescente , Microscopía Inmunoelectrónica , Datos de Secuencia Molecular , Mutación , Estructura Terciaria de Proteína , Transporte de Proteínas/fisiología , Proteínas Recombinantes de Fusión/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...