Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Metab ; 6(8): 1529-1548, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39192144

RESUMEN

Cultured cancer cells frequently rely on the consumption of glutamine and its subsequent hydrolysis by glutaminase (GLS). However, this metabolic addiction can be lost in the tumour microenvironment, rendering GLS inhibitors ineffective in the clinic. Here we show that glutamine-addicted breast cancer cells adapt to chronic glutamine starvation, or GLS inhibition, via AMPK-mediated upregulation of the serine synthesis pathway (SSP). In this context, the key product of the SSP is not serine, but α-ketoglutarate (α-KG). Mechanistically, we find that phosphoserine aminotransferase 1 (PSAT1) has a unique capacity for sustained α-KG production when glutamate is depleted. Breast cancer cells with resistance to glutamine starvation or GLS inhibition are highly dependent on SSP-supplied α-KG. Accordingly, inhibition of the SSP prevents adaptation to glutamine blockade, resulting in a potent drug synergism that suppresses breast tumour growth. These findings highlight how metabolic redundancy can be context dependent, with the catalytic properties of different metabolic enzymes that act on the same substrate determining which pathways can support tumour growth in a particular nutrient environment. This, in turn, has practical consequences for therapies targeting cancer metabolism.


Asunto(s)
Neoplasias de la Mama , Glutamina , Transaminasas , Glutamina/metabolismo , Humanos , Transaminasas/metabolismo , Transaminasas/antagonistas & inhibidores , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Femenino , Glutaminasa/antagonistas & inhibidores , Glutaminasa/metabolismo , Animales , Ácidos Cetoglutáricos/metabolismo , Adaptación Fisiológica , Ratones , Serina/metabolismo , Microambiente Tumoral
2.
ACS Chem Biol ; 19(7): 1544-1553, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38915184

RESUMEN

Glutaric Aciduria Type 1 (GA1) is a serious inborn error of metabolism with no pharmacological treatments. A novel strategy to treat this disease is to divert the toxic biochemical intermediates to less toxic or nontoxic metabolites. Here, we report a putative novel target, succinyl-CoA:glutarate-CoA transferase (SUGCT), which we hypothesize suppresses the GA1 metabolic phenotype through decreasing glutaryl-CoA and the derived 3-hydroxyglutaric acid. SUGCT is a type III CoA transferase that uses succinyl-CoA and glutaric acid as substrates. We report the structure of SUGCT, develop enzyme- and cell-based assays, and identify valsartan and losartan carboxylic acid as inhibitors of the enzyme in a high-throughput screen of FDA-approved compounds. The cocrystal structure of SUGCT with losartan carboxylic acid revealed a novel pocket in the active site and further validated the high-throughput screening approach. These results may form the basis for the future development of new pharmacological intervention to treat GA1.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Encefalopatías Metabólicas , Humanos , Errores Innatos del Metabolismo de los Aminoácidos/tratamiento farmacológico , Errores Innatos del Metabolismo de los Aminoácidos/metabolismo , Errores Innatos del Metabolismo de los Aminoácidos/enzimología , Errores Innatos del Metabolismo de los Aminoácidos/genética , Encefalopatías Metabólicas/tratamiento farmacológico , Encefalopatías Metabólicas/metabolismo , Encefalopatías Metabólicas/enzimología , Glutaratos/metabolismo , Glutaratos/química , Losartán/farmacología , Losartán/química , Coenzima A Transferasas/metabolismo , Coenzima A Transferasas/antagonistas & inhibidores , Coenzima A Transferasas/genética , Coenzima A Transferasas/química , Valsartán , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Cristalografía por Rayos X , Dominio Catalítico , Acilcoenzima A/metabolismo , Acilcoenzima A/química , Modelos Moleculares , Ensayos Analíticos de Alto Rendimiento , Glutaril-CoA Deshidrogenasa/deficiencia
3.
Nat Microbiol ; 9(3): 614-630, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38429422

RESUMEN

Microbial transformation of bile acids affects intestinal immune homoeostasis but its impact on inflammatory pathologies remains largely unknown. Using a mouse model of graft-versus-host disease (GVHD), we found that T cell-driven inflammation decreased the abundance of microbiome-encoded bile salt hydrolase (BSH) genes and reduced the levels of unconjugated and microbe-derived bile acids. Several microbe-derived bile acids attenuated farnesoid X receptor (FXR) activation, suggesting that loss of these metabolites during inflammation may increase FXR activity and exacerbate the course of disease. Indeed, mortality increased with pharmacological activation of FXR and decreased with its genetic ablation in donor T cells during mouse GVHD. Furthermore, patients with GVHD after allogeneic hematopoietic cell transplantation showed similar loss of BSH and the associated reduction in unconjugated and microbe-derived bile acids. In addition, the FXR antagonist ursodeoxycholic acid reduced the proliferation of human T cells and was associated with a lower risk of GVHD-related mortality in patients. We propose that dysbiosis and loss of microbe-derived bile acids during inflammation may be an important mechanism to amplify T cell-mediated diseases.


Asunto(s)
Enfermedad Injerto contra Huésped , Linfocitos T , Humanos , Intestinos , Inflamación , Ácidos y Sales Biliares
4.
bioRxiv ; 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38370847

RESUMEN

Glutaric Aciduria Type 1 (GA1) is a serious inborn error of metabolism with no pharmacological treatments. A novel strategy to treat this disease is to divert the toxic biochemical intermediates to less toxic or non-toxic metabolites. Here, we report a novel target, SUGCT, which we hypothesize suppresses the GA1 metabolic phenotype through decreasing glutaryl-CoA. We report the structure of SUGCT, the first eukaryotic structure of a type III CoA transferase, develop a high-throughput enzyme assay and a cell-based assay, and identify valsartan and losartan carboxylic acid as inhibitors of the enzyme validating the screening approach. These results may form the basis for future development of new pharmacological intervention to treat GA1.

5.
Nat Cancer ; 5(2): 283-298, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38195933

RESUMEN

Lipids and their modifying enzymes regulate diverse features of the tumor microenvironment and cancer progression. The secreted enzyme autotaxin (ATX) hydrolyzes extracellular lysophosphatidylcholine to generate the multifunctional lipid mediator lysophosphatidic acid (LPA) and supports the growth of several tumor types, including pancreatic ductal adenocarcinoma (PDAC). Here we show that ATX suppresses the accumulation of eosinophils in the PDAC microenvironment. Genetic or pharmacologic ATX inhibition increased the number of intratumor eosinophils, which promote tumor cell apoptosis locally and suppress tumor progression. Mechanistically, ATX suppresses eosinophil accumulation via an autocrine feedback loop, wherein ATX-LPA signaling negatively regulates the activity of the AP-1 transcription factor c-Jun, in turn suppressing the expression of the potent eosinophil chemoattractant CCL11 (eotaxin-1). Eosinophils were identified in human PDAC specimens, and rare individuals with high intratumor eosinophil abundance had the longest overall survival. Together with recent findings, this study reveals the context-dependent, immune-modulatory potential of ATX-LPA signaling in cancer.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Eosinófilos/metabolismo , Quimiocina CCL11 , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Procesos Neoplásicos , Lisofosfatidilcolinas/metabolismo , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Microambiente Tumoral
6.
Nat Chem Biol ; 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37884806

RESUMEN

Impaired redox metabolism is a key contributor to the etiology of many diseases, including primary mitochondrial disorders, cancer, neurodegeneration and aging. However, mechanistic studies of redox imbalance remain challenging due to limited strategies that can perturb redox metabolism in various cellular or organismal backgrounds. Most studies involving impaired redox metabolism have focused on oxidative stress; consequently, less is known about the settings where there is an overabundance of NADH reducing equivalents, termed reductive stress. Here we introduce a soluble transhydrogenase from Escherichia coli (EcSTH) as a novel genetically encoded tool to promote reductive stress in living cells. When expressed in mammalian cells, EcSTH, and a mitochondrially targeted version (mitoEcSTH), robustly elevated the NADH/NAD+ ratio in a compartment-specific manner. Using this tool, we determined that metabolic and transcriptomic signatures of the NADH reductive stress are cellular background specific. Collectively, our novel genetically encoded tool represents an orthogonal strategy to promote reductive stress.

7.
Front Cell Dev Biol ; 11: 1160154, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37440924

RESUMEN

Mammalian sperm require sufficient energy to support motility and capacitation for successful fertilization. Previous studies cataloging the changes to metabolism in sperm explored ejaculated human sperm or dormant mouse sperm surgically extracted from the cauda epididymis. Due to the differences in methods of collection, it remains unclear whether any observed differences between mouse and human sperm represent species differences or reflect the distinct maturation states of the sperm under study. Here we compare the metabolic changes during capacitation of epididymal versus ejaculated mouse sperm and relate these changes to ejaculated human sperm. Using extracellular flux analysis and targeted metabolic profiling, we show that capacitation-induced changes lead to increased flux through both glycolysis and oxidative phosphorylation in mouse and human sperm. Ejaculation leads to greater flexibility in the ability to use different carbon sources. While epididymal sperm are dependent upon glucose, ejaculated mouse and human sperm gain the ability to also leverage non-glycolytic energy sources such as pyruvate and citrate.

8.
J Inherit Metab Dis ; 46(5): 931-942, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37309295

RESUMEN

Toxicity of accumulating substrates is a significant problem in several disorders of valine and isoleucine degradation notably short-chain enoyl-CoA hydratase (ECHS1 or crotonase) deficiency, 3-hydroxyisobutyryl-CoA hydrolase (HIBCH) deficiency, propionic acidemia (PA), and methylmalonic aciduria (MMA). Isobutyryl-CoA dehydrogenase (ACAD8) and short/branched-chain acyl-CoA dehydrogenase (SBCAD, ACADSB) function in the valine and isoleucine degradation pathways, respectively. Deficiencies of these acyl-CoA dehydrogenase (ACAD) enzymes are considered biochemical abnormalities with limited or no clinical consequences. We investigated whether substrate reduction therapy through inhibition of ACAD8 and SBCAD can limit the accumulation of toxic metabolic intermediates in disorders of valine and isoleucine metabolism. Using analysis of acylcarnitine isomers, we show that 2-methylenecyclopropaneacetic acid (MCPA) inhibited SBCAD, isovaleryl-CoA dehydrogenase, short-chain acyl-CoA dehydrogenase and medium-chain acyl-CoA dehydrogenase, but not ACAD8. MCPA treatment of wild-type and PA HEK-293 cells caused a pronounced decrease in C3-carnitine. Furthermore, deletion of ACADSB in HEK-293 cells led to an equally strong decrease in C3-carnitine when compared to wild-type cells. Deletion of ECHS1 in HEK-293 cells caused a defect in lipoylation of the E2 component of the pyruvate dehydrogenase complex, which was not rescued by ACAD8 deletion. MCPA was able to rescue lipoylation in ECHS1 KO cells, but only in cells with prior ACAD8 deletion. SBCAD was not the sole ACAD responsible for this compensation, which indicates substantial promiscuity of ACADs in HEK-293 cells for the isobutyryl-CoA substrate. Substrate promiscuity appeared less prominent for 2-methylbutyryl-CoA at least in HEK-293 cells. We suggest that pharmacological inhibition of SBCAD to treat PA should be investigated further.


Asunto(s)
Ácido 2-Metil-4-clorofenoxiacético , Acidemia Propiónica , Humanos , Valina/genética , Valina/metabolismo , Acil-CoA Deshidrogenasa/metabolismo , Isoleucina/metabolismo , Células HEK293 , Carnitina
9.
Nat Immunol ; 24(8): 1358-1369, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37365386

RESUMEN

Following infection or vaccination, activated B cells at extrafollicular sites or within germinal centers (GCs) undergo vigorous clonal proliferation. Proliferating lymphocytes have been shown to undertake lactate dehydrogenase A (LDHA)-dependent aerobic glycolysis; however, the specific role of this metabolic pathway in a B cell transitioning from a naïve to a highly proliferative, activated state remains poorly defined. Here, we deleted LDHA in a stage-specific and cell-specific manner. We find that ablation of LDHA in a naïve B cell did not profoundly affect its ability to undergo a bacterial lipopolysaccharide-induced extrafollicular B cell response. On the other hand, LDHA-deleted naïve B cells had a severe defect in their capacities to form GCs and mount GC-dependent antibody responses. In addition, loss of LDHA in T cells severely compromised B cell-dependent immune responses. Strikingly, when LDHA was deleted in activated, as opposed to naïve, B cells, there were only minimal effects on the GC reaction and in the generation of high-affinity antibodies. These findings strongly suggest that naïve and activated B cells have distinct metabolic requirements that are further regulated by niche and cellular interactions.


Asunto(s)
Linfocitos B , Centro Germinal , Linfocitos T , Activación de Linfocitos , Comunicación Celular
10.
Nat Chem Biol ; 19(7): 792-794, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36973444
11.
Cell Rep ; 42(1): 111965, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36649711

RESUMEN

NLRP1 and CARD8 are related pattern-recognition receptors (PRRs) that detect intracellular danger signals and form inflammasomes. Both undergo autoproteolysis, generating N-terminal (NT) and C-terminal (CT) fragments. The proteasome-mediated degradation of the NT releases the CT from autoinhibition, but the stimuli that trigger NT degradation have not been fully elucidated. Here, we show that several distinct agents that interfere with protein folding, including aminopeptidase inhibitors, chaperone inhibitors, and inducers of the unfolded protein response, accelerate NT degradation. However, these agents alone do not trigger inflammasome formation because the released CT fragments are physically sequestered by the serine dipeptidase DPP9. We show that DPP9-binding ligands must also be present to disrupt these complexes and allow the CT fragments to oligomerize into inflammasomes. Overall, these results indicate that NLRP1 and CARD8 detect a specific perturbation that induces both protein folding stress and DPP9 ligand accumulation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Inflamasomas , Inflamasomas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas NLR/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Pliegue de Proteína , Proteínas Adaptadoras de Señalización CARD/metabolismo
12.
Cell ; 185(22): 4099-4116.e13, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-36261039

RESUMEN

Some people are more attractive to mosquitoes than others, but the mechanistic basis of this phenomenon is poorly understood. We tested mosquito attraction to human skin odor and identified people who are exceptionally attractive or unattractive to mosquitoes. These differences were stable over several years. Chemical analysis revealed that highly attractive people produce significantly more carboxylic acids in their skin emanations. Mutant mosquitoes lacking the chemosensory co-receptors Ir8a, Ir25a, or Ir76b were severely impaired in attraction to human scent, but retained the ability to differentiate highly and weakly attractive people. The link between elevated carboxylic acids in "mosquito-magnet" human skin odor and phenotypes of genetic mutations in carboxylic acid receptors suggests that such compounds contribute to differential mosquito attraction. Understanding why some humans are more attractive than others provides insights into what skin odorants are most important to the mosquito and could inform the development of more effective repellents.


Asunto(s)
Aedes , Anopheles , Repelentes de Insectos , Animales , Humanos , Ácidos Carboxílicos/farmacología , Odorantes/análisis , Repelentes de Insectos/farmacología , Repelentes de Insectos/análisis
13.
Sci Transl Med ; 14(646): eabj2829, 2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35613281

RESUMEN

Microbial diversity is associated with improved outcomes in recipients of allogeneic hematopoietic cell transplantation (allo-HCT), but the mechanism underlying this observation is unclear. In a cohort of 174 patients who underwent allo-HCT, we demonstrate that a diverse intestinal microbiome early after allo-HCT is associated with an increased number of innate-like mucosal-associated invariant T (MAIT) cells, which are in turn associated with improved overall survival and less acute graft-versus-host disease (aGVHD). Immune profiling of conventional and unconventional immune cell subsets revealed that the prevalence of Vδ2 cells, the major circulating subpopulation of γδ T cells, closely correlated with the frequency of MAIT cells and was associated with less aGVHD. Analysis of these populations using both single-cell transcriptomics and flow cytometry suggested a shift toward activated phenotypes and a gain of cytotoxic and effector functions after transplantation. A diverse intestinal microbiome with the capacity to produce activating ligands for MAIT and Vδ2 cells appeared to be necessary for the maintenance of these populations after allo-HCT. These data suggest an immunological link between intestinal microbial diversity, microbe-derived ligands, and maintenance of unconventional T cells.


Asunto(s)
Microbioma Gastrointestinal , Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Células T Invariantes Asociadas a Mucosa , Humanos , Ligandos
14.
Nat Chem Biol ; 18(5): 565-574, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35165443

RESUMEN

Inflammasomes are multiprotein complexes that sense intracellular danger signals and induce pyroptosis. CARD8 and NLRP1 are related inflammasomes that are repressed by the enzymatic activities and protein structures of the dipeptidyl peptidases 8 and 9 (DPP8/9). Potent DPP8/9 inhibitors such as Val-boroPro (VbP) activate both NLRP1 and CARD8, but chemical probes that selectively activate only one have not been identified. Here we report a small molecule called CQ31 that selectively activates CARD8. CQ31 inhibits the M24B aminopeptidases prolidase (PEPD) and Xaa-Pro aminopeptidase 1 (XPNPEP1), leading to the accumulation of proline-containing peptides that inhibit DPP8/9 and thereby activate CARD8. NLRP1 is distinct from CARD8 in that it directly contacts DPP8/9's active site; these proline-containing peptides, unlike VbP, do not disrupt this repressive interaction and thus do not activate NLRP1. We expect that CQ31 will now become a valuable tool to study CARD8 biology.


Asunto(s)
Proteínas Adaptadoras de Señalización CARD , Inflamasomas , Aminopeptidasas/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Adaptadoras de Señalización CARD/metabolismo , Proteínas de Neoplasias , Prolina
15.
Med Res Arch ; 10(10)2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36618438

RESUMEN

Background: Fecal microbiota transplantation (FMT) is an effective treatment of recurrent Clostridioides difficile infections (rCDI), but has more limited efficacy in treating either ulcerative colitis (UC) or Crohn's disease (CD), two major forms of inflammatory bowel diseases (IBD). We hypothesize that FMT recipients with rCDI and/or IBD have baseline fecal bile acid (BA) compositions that differ significantly from that of their healthy donors and that FMT will normalize the BA compositions. Aim: To study the effect of single colonoscopic FMT on microbial composition and function in four recipient groups: 1.) rCDI patients without IBD (rCDI-IBD); 2.) rCDI with IBD (rCDI+IBD); 3.) UC patients without rCDI (UC-rCDI); 4.) CD patients without rCDI (CD-rCDI). Methods: We performed 16S rRNA gene sequence, shotgun DNA sequence and quantitative bile acid metabolomic analyses on stools collected from 55 pairs of subjects and donors enrolled in two prospective single arm FMT clinical trials (Clinical Trials.gov ID NCT03268213, 479696, UC no rCDI ≥ 2x IND 1564 and NCT03267238, IND 16795). Fitted linear mixed models were used to examine the effects of four recipient groups, FMT status (Donor, pre-FMT, 1-week post-FMT, 3-months post-FMT) and first order Group*FMT interactions on microbial diversity and composition, bile acid metabolites and bile acid metabolizing enzyme gene abundance. Results: The pre-FMT stools collected from rCDI ± IBD recipients had reduced α-diversity compared to the healthy donor stools and was restored post-FMT. The α-diversity in the pre-FMT stools collected from UC-rCDI or CD-rCDI recipients did not differ significantly from donor stools. FMT normalized some recipient/donor ratios of genus level taxa abundance in the four groups. Fecal secondary BA levels, including some of the secondary BA epimers that exhibit in vitro immunomodulatory activities, were lower in rCDI±IBD and CD-rCDI but not UC-rCDI recipients compared to donors. FMT restored secondary BA levels. Metagenomic baiE gene and some of the eight bile salt hydrolase (BSH) phylotype abundances were significantly correlated with fecal BA levels. Conclusion: Restoration of multiple secondary BA levels, including BA epimers implicated in immunoregulation, are associated with restoration of fecal baiE gene counts, suggesting that the 7-α-dehydroxylation step is rate-limiting.

16.
Blood ; 139(15): 2392-2405, 2022 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-34653248

RESUMEN

The intestinal microbiota is essential for the fermentation of dietary fiber into short-chain fatty acids (SCFA) such as butyrate, acetate, and propionate. SCFAs can bind to the G-protein-coupled receptors GPR43 and GPR109A (HCAR2), with varying affinities to promote cellular effects in metabolism or changes in immune function. We explored the role of GPR109A as the main receptor for butyrate in mouse models of allogeneic hematopoietic cell transplantation (allo-HCT) and graft-versus-host disease (GVHD). Deletion of GPR109A in allo-HCT recipients did not affect GVHD, but transplantation of T cells from GPR109A knockout (KO) (Gpr109a-/-) mice into allo-HCT recipient mice significantly reduced GVHD morbidity and mortality compared with recipients of wild-type (WT) T cells. Recipients of Gpr109a-/- T cells exhibited less GVHD-associated target organ pathology and decreased proliferation and homing of alloreactive T cells to target tissues. Although Gpr109a-/- T cells did not exhibit immune deficits at a steady state, following allo-activation, Gpr109a-/- T cells underwent increased apoptosis and were impaired mitochondrial oxidative phosphorylation, which was reversible through antioxidant treatment with N-acetylcysteine (NAC). In conclusion, we found that GPR109A expression by allo-activated T cells is essential for metabolic homeostasis and expansion, which are necessary features to induce GVHD after allo-HCT.


Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Animales , Butiratos , Ácidos Grasos Volátiles/fisiología , Ratones , Linfocitos T
17.
Cell Host Microbe ; 30(1): 124-138.e8, 2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-34971560

RESUMEN

Human health and disease have increasingly been shown to be impacted by the gut microbiota, and mouse models are essential for investigating these effects. However, the compositions of human and mouse gut microbiotas are distinct, limiting translation of microbiota research between these hosts. To address this, we constructed the Mouse Gastrointestinal Bacteria Catalogue (MGBC), a repository of 26,640 high-quality mouse microbiota-derived bacterial genomes. This catalog enables species-level analyses for mapping functions of interest and identifying functionally equivalent taxa between the microbiotas of humans and mice. We have complemented this with a publicly deposited collection of 223 bacterial isolates, including 62 previously uncultured species, to facilitate experimental investigation of individual commensal bacteria functions in vitro and in vivo. Together, these resources provide the ability to identify and test functionally equivalent members of the host-specific gut microbiotas of humans and mice and support the informed use of mouse models in human microbiota research.


Asunto(s)
Bacterias/clasificación , Bacterias/aislamiento & purificación , Microbioma Gastrointestinal/fisiología , Animales , Bacterias/genética , Bacterias/metabolismo , Butiratos/metabolismo , Genoma Bacteriano , Humanos , Metagenoma/genética , Ratones , Modelos Animales
18.
Nat Rev Cancer ; 22(2): 102-113, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34764459

RESUMEN

Copper is an essential nutrient whose redox properties make it both beneficial and toxic to the cell. Recent progress in studying transition metal signalling has forged new links between researchers of different disciplines that can help translate basic research in the chemistry and biology of copper into clinical therapies and diagnostics to exploit copper-dependent disease vulnerabilities. This concept is particularly relevant in cancer, as tumour growth and metastasis have a heightened requirement for this metal nutrient. Indeed, the traditional view of copper as solely an active site metabolic cofactor has been challenged by emerging evidence that copper is also a dynamic signalling metal and metalloallosteric regulator, such as for copper-dependent phosphodiesterase 3B (PDE3B) in lipolysis, mitogen-activated protein kinase kinase 1 (MEK1) and MEK2 in cell growth and proliferation and the kinases ULK1 and ULK2 in autophagy. In this Perspective, we summarize our current understanding of the connection between copper and cancer and explore how challenges in the field could be addressed by using the framework of cuproplasia, which is defined as regulated copper-dependent cell proliferation and is a representative example of a broad range of metalloplasias. Cuproplasia is linked to a diverse array of cellular processes, including mitochondrial respiration, antioxidant defence, redox signalling, kinase signalling, autophagy and protein quality control. Identifying and characterizing new modes of copper-dependent signalling offers translational opportunities that leverage disease vulnerabilities to this metal nutrient.


Asunto(s)
Cobre , Neoplasias , Autofagia , Proliferación Celular , Cobre/metabolismo , Humanos , Transducción de Señal
19.
Nat Commun ; 12(1): 7311, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34911956

RESUMEN

Copper serves as a co-factor for a host of metalloenzymes that contribute to malignant progression. The orally bioavailable copper chelating agent tetrathiomolybdate (TM) has been associated with a significant survival benefit in high-risk triple negative breast cancer (TNBC) patients. Despite these promising data, the mechanisms by which copper depletion impacts metastasis are poorly understood and this remains a major barrier to advancing TM to a randomized phase II trial. Here, using two independent TNBC models, we report a discrete subpopulation of highly metastatic SOX2/OCT4+ cells within primary tumors that exhibit elevated intracellular copper levels and a marked sensitivity to TM. Global proteomic and metabolomic profiling identifies TM-mediated inactivation of Complex IV as the primary metabolic defect in the SOX2/OCT4+ cell population. We also identify AMPK/mTORC1 energy sensor as an important downstream pathway and show that AMPK inhibition rescues TM-mediated loss of invasion. Furthermore, loss of the mitochondria-specific copper chaperone, COX17, restricts copper deficiency to mitochondria and phenocopies TM-mediated alterations. These findings identify a copper-metabolism-metastasis axis with potential to enrich patient populations in next-generation therapeutic trials.


Asunto(s)
Cobre/metabolismo , Mitocondrias/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Animales , Línea Celular Tumoral , Proteínas Transportadoras de Cobre/genética , Proteínas Transportadoras de Cobre/metabolismo , Femenino , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Ratones Endogámicos C57BL , Mitocondrias/genética , Metástasis de la Neoplasia , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Fosforilación Oxidativa , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología
20.
Cell Rep ; 35(11): 109264, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34133930

RESUMEN

MYC activates different metabolic programs in a cell-type- and cell-status-dependent manner. However, the role of MYC in inflammatory macrophages has not yet been determined. Metabolic and molecular analyses reveal that MYC, but not hypoxia inducible factor 1 (HIF1), is involved in enhancing early glycolytic flux during inflammatory macrophage polarization. Ablation of MYC decreases lactate production by regulating lactate dehydrogenase (LDH) activity and causes increased inflammatory cytokines by regulating interferon regulatory factor 4 (IRF4) in response to lipopolysaccharide. Moreover, myeloid-specific deletion of MYC and pharmacological inhibition of the MYC/LDH axis enhance inflammation and the bacterial clearance in vivo. These results elucidate the potential role of the MYC/LDH/IRF4 axis in inflammatory macrophages by connecting early glycolysis with inflammatory responses and suggest that modulating early glycolytic flux mediated by the MYC/LDH axis can be used to open avenues for the therapeutic modulation of macrophage polarization to fight against bacterial infection.


Asunto(s)
Glucólisis , Inflamación/metabolismo , Inflamación/patología , Factores Reguladores del Interferón/metabolismo , Macrófagos/metabolismo , Macrófagos/patología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Animales , Bacterias/metabolismo , Citocinas/biosíntesis , Femenino , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Inmunidad Innata , Mediadores de Inflamación/metabolismo , Ácido Láctico/metabolismo , Lipopolisacáridos , Masculino , Ratones Noqueados , Proteínas Proto-Oncogénicas c-myc/deficiencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...