Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biochemistry ; 62(3): 747-758, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36656653

RESUMEN

The main protease of SARS-CoV-2 (Mpro) plays a critical role in viral replication; although it is relatively conserved, Mpro has nevertheless evolved over the course of the COVID-19 pandemic. Here, we examine phenotypic changes in clinically observed variants of Mpro, relative to the originally reported wild-type enzyme. Using atomistic molecular dynamics simulations, we examine effects of mutation on protein structure and dynamics. In addition to basic structural properties such as variation in surface area and torsion angles, we use protein structure networks and active site networks to evaluate functionally relevant characters related to global cohesion and active site constraint. Substitution analysis shows a continuing trend toward more hydrophobic residues that are dependent on the location of the residue in primary, secondary, tertiary, and quaternary structures. Phylogenetic analysis provides additional evidence for the impact of selective pressure on mutation of Mpro. Overall, these analyses suggest evolutionary adaptation of Mpro toward more hydrophobicity and a less-constrained active site in response to the selective pressures of a novel host environment.


Asunto(s)
COVID-19 , Proteasas 3C de Coronavirus , Evolución Molecular , SARS-CoV-2 , Humanos , Antivirales/farmacología , COVID-19/genética , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Mutación , Filogenia , Inhibidores de Proteasas/química , SARS-CoV-2/enzimología , SARS-CoV-2/genética , Proteasas 3C de Coronavirus/genética
2.
Biochemistry ; 59(39): 3741-3756, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32931703

RESUMEN

The SARS-CoV-2 main protease (Mpro) is essential to viral replication and cleaves highly specific substrate sequences, making it an obvious target for inhibitor design. However, as for any virus, SARS-CoV-2 is subject to constant neutral drift and selection pressure, with new Mpro mutations arising over time. Identification and structural characterization of Mpro variants is thus critical for robust inhibitor design. Here we report sequence analysis, structure predictions, and molecular modeling for seventy-nine Mpro variants, constituting all clinically observed mutations in this protein as of April 29, 2020. Residue substitution is widely distributed, with some tendency toward larger and more hydrophobic residues. Modeling and protein structure network analysis suggest differences in cohesion and active site flexibility, revealing patterns in viral evolution that have relevance for drug discovery.


Asunto(s)
Betacoronavirus/enzimología , Betacoronavirus/genética , Modelos Moleculares , Mutación , Proteínas no Estructurales Virales/genética , Dominio Catalítico , Descubrimiento de Drogas , Evolución Molecular , Humanos , Estructura Molecular , Filogenia , Inhibidores de Proteasas/química , SARS-CoV-2 , Análisis de Secuencia de Proteína , Proteínas no Estructurales Virales/antagonistas & inhibidores
3.
bioRxiv ; 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32511408

RESUMEN

The SARS-CoV-2 main protease (M pro ) is essential to viral replication and cleaves highly specific substrate sequences, making it an obvious target for inhibitor design. However, as for any virus, SARS-CoV-2 is subject to constant selection pressure, with new M pro mutations arising over time. Identification and structural characterization of M pro variants is thus critical for robust inhibitor design. Here we report sequence analysis, structure predictions, and molecular modeling for seventy-nine M pro variants, constituting all clinically observed mutations in this protein as of April 29, 2020. Residue substitution is widely distributed, with some tendency toward larger and more hydrophobic residues. Modeling and protein structure network analysis suggest differences in cohesion and active site flexibility, revealing patterns in viral evolution that have relevance for drug discovery.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...