Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Mol Ther ; 32(3): 663-677, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38273654

RESUMEN

BCL11A-XL directly binds and represses the fetal globin (HBG1/2) gene promoters, using 3 zinc-finger domains (ZnF4, ZnF5, and ZnF6), and is a potential target for ß-hemoglobinopathy treatments. Disrupting BCL11A-XL results in derepression of fetal globin and high HbF, but also affects hematopoietic stem and progenitor cell (HSPC) engraftment and erythroid maturation. Intriguingly, neurodevelopmental patients with ZnF domain mutations have elevated HbF with normal hematological parameters. Inspired by this natural phenomenon, we used both CRISPR-Cas9 and base editing at specific ZnF domains and assessed the impacts on HbF production and hematopoietic differentiation. Generating indels in the various ZnF domains by CRISPR-Cas9 prevented the binding of BCL11A-XL to its site in the HBG1/2 promoters and elevated the HbF levels but affected normal hematopoiesis. Far fewer side effects were observed with base editing- for instance, erythroid maturation in vitro was near normal. However, we observed a modest reduction in HSPC engraftment and a complete loss of B cell development in vivo, presumably because current base editing is not capable of precisely recapitulating the mutations found in patients with BCL11A-XL-associated neurodevelopment disorders. Overall, our results reveal that disrupting different ZnF domains has different effects. Disrupting ZnF4 elevated HbF levels significantly while leaving many other erythroid target genes unaffected, and interestingly, disrupting ZnF6 also elevated HbF levels, which was unexpected because this region does not directly interact with the HBG1/2 promoters. This first structure/function analysis of ZnF4-6 provides important insights into the domains of BCL11A-XL that are required to repress fetal globin expression and provide framework for exploring the introduction of natural mutations that may enable the derepression of single gene while leaving other functions unaffected.


Asunto(s)
Edición Génica , gamma-Globinas , Humanos , Edición Génica/métodos , gamma-Globinas/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Células Madre Hematopoyéticas/metabolismo , Dedos de Zinc , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo
2.
Mol Ther Nucleic Acids ; 34: 102025, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37744176

RESUMEN

Hemoglobin switching is a complex biological process not yet fully elucidated. The mechanism regulating the suppression of fetal hemoglobin (HbF) expression is of particular interest because of the positive impact of HbF on the course of diseases such as ß-thalassemia and sickle cell disease, hereditary hemoglobin disorders that affect the health of countless individuals worldwide. Several transcription factors have been implicated in the control of HbF, of which BCL11A has emerged as a major player in HbF silencing. SOX6 has also been implicated in silencing HbF and is critical to the silencing of the mouse embryonic hemoglobins. BCL11A and SOX6 are co-expressed and physically interact in the erythroid compartment during differentiation. In this study, we observe that BCL11A knockout leads to post-transcriptional downregulation of SOX6 through activation of microRNA (miR)-365-3p. Downregulating SOX6 by transient ectopic expression of miR-365-3p or gene editing activates embryonic and fetal ß-like globin gene expression in erythroid cells. The synchronized expression of BCL11A and SOX6 is crucial for hemoglobin switching. In this study, we identified a BCL11A/miR-365-3p/SOX6 evolutionarily conserved pathway, providing insights into the regulation of the embryonic and fetal globin genes suggesting new targets for treating ß-hemoglobinopathies.

4.
Nat Genet ; 55(7): 1210-1220, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37400614

RESUMEN

Inducing fetal hemoglobin (HbF) in red blood cells can alleviate ß-thalassemia and sickle cell disease. We compared five strategies in CD34+ hematopoietic stem and progenitor cells, using either Cas9 nuclease or adenine base editors. The most potent modification was adenine base editor generation of γ-globin -175A>G. Homozygous -175A>G edited erythroid colonies expressed 81 ± 7% HbF versus 17 ± 11% in unedited controls, whereas HbF levels were lower and more variable for two Cas9 strategies targeting a BCL11A binding motif in the γ-globin promoter or a BCL11A erythroid enhancer. The -175A>G base edit also induced HbF more potently than a Cas9 approach in red blood cells generated after transplantation of CD34+ hematopoietic stem and progenitor cells into mice. Our data suggest a strategy for potent, uniform induction of HbF and provide insights into γ-globin gene regulation. More generally, we demonstrate that diverse indels generated by Cas9 can cause unexpected phenotypic variation that can be circumvented by base editing.


Asunto(s)
Anemia de Células Falciformes , Talasemia beta , Ratones , Animales , gamma-Globinas/genética , gamma-Globinas/metabolismo , Edición Génica , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , Anemia de Células Falciformes/genética , Antígenos CD34/metabolismo , Talasemia beta/genética
5.
Trends Genet ; 38(12): 1284-1298, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35934593

RESUMEN

Sickle cell disease (SCD) is a common genetic blood disorder associated with acute and chronic pain, progressive multiorgan damage, and early mortality. Recent advances in technologies to manipulate the human genome, a century of research and the development of techniques enabling the isolation, efficient genetic modification, and reimplantation of autologous patient hematopoietic stem cells (HSCs), mean that curing most patients with SCD could soon be a reality in wealthy countries. In parallel, ongoing research is pursuing more facile treatments, such as in-vivo-delivered genetic therapies and new drugs that can eventually be administered in low- and middle-income countries where most SCD patients reside.


Asunto(s)
Anemia de Células Falciformes , Trasplante de Células Madre Hematopoyéticas , Humanos , Anemia de Células Falciformes/genética , Anemia de Células Falciformes/terapia , Edición Génica/métodos , Células Madre Hematopoyéticas , Terapia Genética
6.
STAR Protoc ; 3(3): 101598, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-35928006

RESUMEN

Here, we describe protocols to interrogate the binding of the zinc fingers of the transcription factor ZBTB7A to the fetal γ-globin (HBG) promoter. We detail the steps for performing electrophoretic mobility shift assays (EMSAs), X-ray crystallography, and isothermal titration calorimetry (ITC) to explore this interaction. These techniques could readily be applied to the structural studies of other zinc finger transcription factors and cognate DNA sequences. For complete details on the use and execution of this protocol, please refer to Yang et al. (2021).


Asunto(s)
Proteínas de Unión al ADN , Factores de Transcripción , Línea Celular Tumoral , ADN/genética , Proteínas de Unión al ADN/genética , Factores de Transcripción/genética , Dedos de Zinc
7.
Nat Genet ; 54(9): 1417-1426, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35941187

RESUMEN

The fetal-to-adult switch in hemoglobin production is a model of developmental gene control with relevance to the treatment of hemoglobinopathies. The expression of transcription factor BCL11A, which represses fetal ß-type globin (HBG) genes in adult erythroid cells, is predominantly controlled at the transcriptional level but the underlying mechanism is unclear. We identify HIC2 as a repressor of BCL11A transcription. HIC2 and BCL11A are reciprocally expressed during development. Forced expression of HIC2 in adult erythroid cells inhibits BCL11A transcription and induces HBG expression. HIC2 binds to erythroid BCL11A enhancers to reduce chromatin accessibility and binding of transcription factor GATA1, diminishing enhancer activity and enhancer-promoter contacts. DNA-binding and crystallography studies reveal direct steric hindrance as one mechanism by which HIC2 inhibits GATA1 binding at a critical BCL11A enhancer. Conversely, loss of HIC2 in fetal erythroblasts increases enhancer accessibility, GATA1 binding and BCL11A transcription. HIC2 emerges as an evolutionarily conserved regulator of hemoglobin switching via developmental control of BCL11A.


Asunto(s)
Hemoglobinas , Factores de Transcripción de Tipo Kruppel , Proteínas Represoras , Proteínas Supresoras de Tumor , Proteínas Portadoras/genética , Células Eritroides/metabolismo , Hemoglobinas/genética , Humanos , Factores de Transcripción de Tipo Kruppel/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Globinas beta/genética , Globinas beta/metabolismo , gamma-Globinas/genética
8.
Elife ; 112022 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-35147495

RESUMEN

Naturally occurring point mutations in the HBG promoter switch hemoglobin synthesis from defective adult beta-globin to fetal gamma-globin in sickle cell patients with hereditary persistence of fetal hemoglobin (HPFH) and ameliorate the clinical severity. Inspired by this natural phenomenon, we tiled the highly homologous HBG proximal promoters using adenine and cytosine base editors that avoid the generation of large deletions and identified novel regulatory regions including a cluster at the -123 region. Base editing at -123 and -124 bp of HBG promoter induced fetal hemoglobin (HbF) to a higher level than disruption of well-known BCL11A binding site in erythroblasts derived from human CD34+ hematopoietic stem and progenitor cells (HSPC). We further demonstrated in vitro that the introduction of -123T > C and -124T > C HPFH-like mutations drives gamma-globin expression by creating a de novo binding site for KLF1. Overall, our findings shed light on so far unknown regulatory elements within the HBG promoter and identified additional targets for therapeutic upregulation of fetal hemoglobin.


Asunto(s)
Anemia de Células Falciformes/genética , Sistemas CRISPR-Cas , Hemoglobina Fetal/genética , Edición Génica/métodos , Adenina/metabolismo , Línea Celular , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Citosina/metabolismo , Células Madre Hematopoyéticas/metabolismo , Humanos , Mutación Puntual , Regiones Promotoras Genéticas , Globinas beta/genética , Talasemia beta/genética , gamma-Globinas/genética
9.
Blood ; 139(14): 2107-2118, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35090172

RESUMEN

The benign condition hereditary persistence of fetal hemoglobin (HPFH) is known to ameliorate symptoms of co-inherited ß-hemoglobinopathies, such as sickle cell disease and ß-thalassemia. The condition is sometimes associated with point mutations in the fetal globin promoters that disrupt the binding of the repressors BCL11A or ZBTB7A/LRF, which have been extensively studied. HPFH is also associated with a range of deletions within the ß-globin locus that all reside downstream of the fetal HBG2 gene. These deletional forms of HPFH are poorly understood and are the focus of this study. Numerous different mechanisms have been proposed to explain how downstream deletions can boost the expression of the fetal globin genes, including the deletion of silencer elements, of genes encoding noncoding RNA, and bringing downstream enhancer elements into proximity with the fetal globin gene promoters. Here we systematically analyze the deletions associated with both HPFH and a related condition known as δß-thalassemia and propose a unifying mechanism. In all cases where fetal globin is upregulated, the proximal adult ß-globin (HBB) promoter is deleted. We use clustered regularly interspaced short palindromic repeats-mediated gene editing to delete or disrupt elements within the promoter and find that virtually all mutations that reduce ΗΒΒ promoter activity result in elevated fetal globin expression. These results fit with previous models where the fetal and adult globin genes compete for the distal locus control region and suggest that targeting the ΗΒΒ promoter might be explored to elevate fetal globin and reduce sickle globin expression as a treatment of ß-hemoglobinopathies.


Asunto(s)
Globinas , Talasemia beta , Proteínas Portadoras/genética , Línea Celular Tumoral , Proteínas de Unión al ADN/genética , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , Expresión Génica , Globinas/metabolismo , Humanos , Factores de Transcripción/genética , Globinas beta/genética , Globinas beta/metabolismo , Talasemia beta/genética , Talasemia beta/terapia
10.
Cell Rep ; 36(13): 109759, 2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34592153

RESUMEN

Elevated levels of fetal globin protect against ß-hemoglobinopathies, such as sickle cell disease and ß-thalassemia. Two zinc-finger (ZF) repressors, BCL11A and ZBTB7A/LRF, bind directly to the fetal globin promoter elements positioned at -115 and -200, respectively. Here, we describe X-ray structures of the ZBTB7A DNA-binding domain, consisting of four adjacent ZFs, in complex with the -200 sequence element, which contains two copies of four consecutive C:G base pairs. ZF1 and ZF2 recognize the 5' C:G quadruple, and ZF4 contacts the 3' C:G quadruple. Natural non-coding DNA mutations associated with hereditary persistence of fetal hemoglobin (HPFH) impair ZBTB7A DNA binding, with the most severe disruptions resulting from mutations in the base pairs recognized by ZF1 and ZF2. Our results firmly establish ZBTB7A/LRF as a key molecular regulator of fetal globin expression and inform genome-editing strategies that inhibit repressor binding and boost fetal globin expression to treat hemoglobinopathies.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Globinas/genética , Globinas/metabolismo , Regiones Promotoras Genéticas/genética , Factores de Transcripción/metabolismo , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Proteínas de Unión al ADN/genética , Hemoglobina Fetal/genética , Edición Génica/métodos , Humanos , Factores de Transcripción/genética , Dedos de Zinc/fisiología , Talasemia beta/genética
11.
Nat Genet ; 53(8): 1177-1186, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34341563

RESUMEN

Hereditary persistence of fetal hemoglobin (HPFH) ameliorates ß-hemoglobinopathies by inhibiting the developmental switch from γ-globin (HBG1/HBG2) to ß-globin (HBB) gene expression. Some forms of HPFH are associated with γ-globin promoter variants that either disrupt binding motifs for transcriptional repressors or create new motifs for transcriptional activators. How these variants sustain γ-globin gene expression postnatally remains undefined. We mapped γ-globin promoter sequences functionally in erythroid cells harboring different HPFH variants. Those that disrupt a BCL11A repressor binding element induce γ-globin expression by facilitating the recruitment of nuclear transcription factor Y (NF-Y) to a nearby proximal CCAAT box and GATA1 to an upstream motif. The proximal CCAAT element becomes dispensable for HPFH variants that generate new binding motifs for activators NF-Y or KLF1, but GATA1 recruitment remains essential. Our findings define distinct mechanisms through which transcription factors and their cis-regulatory elements activate γ-globin expression in different forms of HPFH, some of which are being recreated by therapeutic genome editing.


Asunto(s)
Factor de Unión a CCAAT/genética , Hemoglobina Fetal/genética , Factor de Transcripción GATA1/genética , gamma-Globinas/genética , Animales , Sitios de Unión , Células COS , Sistemas CRISPR-Cas , Línea Celular , Chlorocebus aethiops , Células Eritroides , Edición Génica/métodos , Regulación del Desarrollo de la Expresión Génica , Humanos , Regiones Promotoras Genéticas , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
12.
Mol Cell ; 81(2): 239-254.e8, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33301730

RESUMEN

Metazoan transcription factors typically regulate large numbers of genes. Here we identify via a CRISPR-Cas9 genetic screen ZNF410, a pentadactyl DNA-binding protein that in human erythroid cells directly activates only a single gene, the NuRD component CHD4. Specificity is conveyed by two highly evolutionarily conserved clusters of ZNF410 binding sites near the CHD4 gene with no counterparts elsewhere in the genome. Loss of ZNF410 in adult-type human erythroid cell culture systems and xenotransplantation settings diminishes CHD4 levels and derepresses the fetal hemoglobin genes. While previously known to be silenced by CHD4, the fetal globin genes are exposed here as among the most sensitive to reduced CHD4 levels.. In vitro DNA binding assays and crystallographic studies reveal the ZNF410-DNA binding mode. ZNF410 is a remarkably selective transcriptional activator in erythroid cells, and its perturbation might offer new opportunities for treatment of hemoglobinopathies.


Asunto(s)
ADN/genética , Células Precursoras Eritroides/metabolismo , Hemoglobina Fetal/genética , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/genética , Factores de Transcripción/genética , Animales , Sitios de Unión , Células COS , Sistemas CRISPR-Cas , Chlorocebus aethiops , ADN/metabolismo , Células Precursoras Eritroides/citología , Células Precursoras Eritroides/trasplante , Sangre Fetal/citología , Sangre Fetal/metabolismo , Hemoglobina Fetal/metabolismo , Feto , Edición Génica , Células HEK293 , Xenoinjertos , Humanos , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/química , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Ratones , Modelos Moleculares , Células Madre Embrionarias de Ratones/citología , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Activación Transcripcional
14.
Nat Commun ; 11(1): 2922, 2020 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-32523103

RESUMEN

The conversion of white adipocytes to thermogenic beige adipocytes represents a potential mechanism to treat obesity and related metabolic disorders. However, the mechanisms involved in converting white to beige adipose tissue remain incompletely understood. Here we show profound beiging in a genetic mouse model lacking the transcriptional repressor Krüppel-like factor 3 (KLF3). Bone marrow transplants from these animals confer the beige phenotype on wild type recipients. Analysis of the cellular and molecular changes reveal an accumulation of eosinophils in adipose tissue. We examine the transcriptomic profile of adipose-resident eosinophils and posit that KLF3 regulates adipose tissue function via transcriptional control of secreted molecules linked to beiging. Furthermore, we provide evidence that eosinophils may directly act on adipocytes to drive beiging and highlight the critical role of these little-understood immune cells in thermogenesis.


Asunto(s)
Tejido Adiposo/metabolismo , Eosinófilos/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Transducción de Señal/fisiología , Adiposidad/genética , Adiposidad/fisiología , Animales , Células COS , Chlorocebus aethiops , Inmunoprecipitación de Cromatina , Citometría de Flujo , Factores de Transcripción de Tipo Kruppel/genética , Masculino , Ratones , Obesidad/metabolismo , Transducción de Señal/genética , Programas Informáticos
15.
Nat Commun ; 11(1): 2560, 2020 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-32444652

RESUMEN

Alterations in DNA methylation occur during development, but the mechanisms by which they influence gene expression remain uncertain. There are few examples where modification of a single CpG dinucleotide directly affects transcription factor binding and regulation of a target gene in vivo. Here, we show that the erythroid transcription factor GATA-1 - that typically binds T/AGATA sites - can also recognise CGATA elements, but only if the CpG dinucleotide is unmethylated. We focus on a single CGATA site in the c-Kit gene which progressively becomes unmethylated during haematopoiesis. We observe that methylation attenuates GATA-1 binding and gene regulation in cell lines. In mice, converting the CGATA element to a TGATA site that cannot be methylated leads to accumulation of megakaryocyte-erythroid progenitors. Thus, the CpG dinucleotide is essential for normal erythropoiesis and this study illustrates how a single methylated CpG can directly affect transcription factor binding and cellular regulation.


Asunto(s)
Factor de Transcripción GATA1/genética , Elementos de Respuesta , Animales , Secuencia de Bases , Sitios de Unión , Metilación de ADN , Factor de Transcripción GATA1/metabolismo , Regulación de la Expresión Génica , Ratones , Regiones Promotoras Genéticas , Unión Proteica
16.
J Biol Chem ; 295(18): 6080-6091, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32213596

RESUMEN

Bacterial products such as lipopolysaccharides (or endotoxin) cause systemic inflammation, resulting in a substantial global health burden. The onset, progression, and resolution of the inflammatory response to endotoxin are usually tightly controlled to avoid chronic inflammation. Members of the NF-κB family of transcription factors are key drivers of inflammation that activate sets of genes in response to inflammatory signals. Such responses are typically short-lived and can be suppressed by proteins that act post-translationally, such as the SOCS (suppressor of cytokine signaling) family. Less is known about direct transcriptional regulation of these responses, however. Here, using a combination of in vitro approaches and in vivo animal models, we show that endotoxin treatment induced expression of the well-characterized transcriptional repressor Krüppel-like factor 3 (KLF3), which, in turn, directly repressed the expression of the NF-κB family member RELA/p65. We also observed that KLF3-deficient mice were hypersensitive to endotoxin and exhibited elevated levels of circulating Ly6C+ monocytes and macrophage-derived inflammatory cytokines. These findings reveal that KLF3 is a fundamental suppressor that operates as a feedback inhibitor of RELA/p65 and may be important in facilitating the resolution of inflammation.


Asunto(s)
Factores de Transcripción de Tipo Kruppel/metabolismo , Factor de Transcripción ReIA/metabolismo , Animales , Inflamación/genética , Inflamación/inmunología , Inflamación/metabolismo , Factores de Transcripción de Tipo Kruppel/deficiencia , Macrófagos/metabolismo , Ratones , Factor de Transcripción ReIA/genética , Activación Transcripcional
17.
Bioessays ; 41(8): e1900041, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31245868

RESUMEN

Transcriptional silencing may not necessarily depend on the continuous residence of a sequence-specific repressor at a control element and may act via a "hit and run" mechanism. Due to limitations in assays that detect transcription factor (TF) binding, such as chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq), this phenomenon may be challenging to detect and therefore its prevalence may be underappreciated. To explore this possibility, erythroid gene promoters that are regulated directly by GATA1 in an inducible system are analyzed. It is found that many regulated genes are bound immediately after induction of GATA1 but the residency of GATA1 decreases over time, particularly at repressed genes. Furthermore, it is shown that the repressive mark H3K27me3 is seldom associated with bound repressors, whereas, in contrast, the active (H3K4me3) histone mark is overwhelmingly associated with TF binding. It is hypothesized that during cellular differentiation and development, certain genes are silenced by repressive TFs that subsequently vacate the region. Catching such repressor TFs in the act of silencing via assays such as ChIP-seq is thus a temporally challenging prospect. The use of inducible systems, epitope tags, and alternative techniques may provide opportunities for detecting elusive "hit and run" transcriptional silencing. Also see the video abstract here https://youtu.be/vgrsoP_HF3g.


Asunto(s)
Silenciador del Gen , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Sitios de Unión , Secuenciación de Inmunoprecipitación de Cromatina , Factor de Transcripción GATA1/genética , Factor de Transcripción GATA1/metabolismo , Sitios Genéticos , Histonas/metabolismo , Humanos , Regiones Promotoras Genéticas , Unión Proteica , Activación Transcripcional
18.
Blood ; 133(8): 852-856, 2019 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-30617196

RESUMEN

ß-hemoglobinopathies, such as sickle cell disease and ß-thalassemia, result from mutations in the adult ß-globin gene. Reactivating the developmentally silenced fetal γ-globin gene elevates fetal hemoglobin levels and ameliorates symptoms of ß-hemoglobinopathies. The continued expression of fetal γ-globin into adulthood occurs naturally in a genetic condition termed hereditary persistence of fetal hemoglobin (HPFH). Point mutations in the fetal γ-globin proximal promoter can cause HPFH. The -113A>G HPFH mutation falls within the -115 cluster of HPFH mutations, a binding site for the fetal globin repressor BCL11A. We demonstrate that the -113A>G HPFH mutation, unlike other mutations in the cluster, does not disrupt BCL11A binding but rather creates a de novo binding site for the transcriptional activator GATA1. Introduction of the -113A>G HPFH mutation into erythroid cells using the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) system increases GATA1 binding and elevates fetal globin levels. These results reveal the mechanism by which the -113A>G HPFH mutation elevates fetal globin and demonstrate the sensitivity of the fetal globin promoter to point mutations that often disrupt repressor binding sites but here create a de novo site for an erythroid activator.


Asunto(s)
Anemia de Células Falciformes , Hemoglobina Fetal , Factor de Transcripción GATA1/metabolismo , Regulación de la Expresión Génica , Mutación Puntual , Elementos de Respuesta , Talasemia beta , Anemia de Células Falciformes/genética , Anemia de Células Falciformes/metabolismo , Línea Celular , Hemoglobina Fetal/biosíntesis , Hemoglobina Fetal/genética , Factor de Transcripción GATA1/genética , Globinas beta/genética , Globinas beta/metabolismo , Talasemia beta/genética , Talasemia beta/metabolismo
20.
Biotechnol Rep (Amst) ; 20: e00285, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30364711

RESUMEN

The ability of transcriptional regulators to drive lineage conversion of somatic cells offers great potential for the treatment of human disease. To explore the concept of switching on specific target genes in heterologous cells, we developed a model system to screen candidate factors for their ability to activate the archetypal megakaryocyte-specific chemokine platelet factor 4 (PF4) in fibroblasts. We found that co-expression of the transcriptional regulators GATA1 and FLI1 resulted in a significant increase in levels of PF4, which became magnified over time. This finding demonstrates that such combinations can be used to produce potentially beneficial chemokines in readily available heterologous cell types.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA