RESUMEN
Sepsis remains a huge unmet medical need for which no approved drugs, besides antibiotics, are on the market. Despite the clinical impact of sepsis, its molecular mechanism remains inadequately understood. Recent insights have shown that profound hepatic transcriptional reprogramming, leading to fatal metabolic abnormalities, might open a new avenue to treat sepsis. Translation of experimental results from rodents to larger animal models of higher relevance for human physiology, such as pigs, is critical and needs exploration. We performed a comparative analysis of the transcriptome profiles in murine and porcine livers using the following sepsis models: cecal ligation and puncture (CLP) in mice and fecal instillation (FI) in pigs, both of which induce polymicrobial septic peritonitis, and lipopolysaccharide (LPS)-induced endotoxemia in pigs, inducing sterile inflammation. Using bulk RNA sequencing, Metascape pathway analysis, and HOMER transcription factor motif analysis, we were able to identify key genes and pathways affected in septic livers. Conserved upregulated pathways in murine CLP and porcine LPS and FI generally comprise typical inflammatory pathways, except for ER stress, which was only found in the murine CLP model. Conserved pathways downregulated in sepsis comprise almost exclusively metabolic pathways such as monocarboxylic acid, steroid, biological oxidation, and small-molecule catabolism. Even though the upregulated inflammatory pathways were equally induced in the two porcine models, the porcine FI model more closely resembles the metabolic dysfunction observed in the CLP liver compared to the porcine LPS model. This comprehensive comparison focusing on the hepatic responses in mouse CLP versus LPS or FI in pigs shows that the two porcine sepsis models generally resemble quite well the mouse CLP model, with a typical inflammatory signature amongst the upregulated genes and metabolic dysfunction amongst the downregulated genes. The hepatic ER stress observed in the murine model could not be replicated in the porcine models. When studying metabolic dysfunction in the liver upon sepsis, the porcine FI model more closely resembles the mouse CLP model compared to the porcine LPS model.
Asunto(s)
Modelos Animales de Enfermedad , Lipopolisacáridos , Hígado , Sepsis , Transcriptoma , Animales , Sepsis/genética , Sepsis/metabolismo , Porcinos , Ratones , Hígado/metabolismo , Perfilación de la Expresión Génica , Masculino , Ratones Endogámicos C57BLRESUMEN
This study examined the effects of fumonisins (FBs) and aflatoxin B1 (AFB1), alone or in combination, on the productivity and health of laying hens, as well as the transfer of aflatoxins (AFs) to chicken food products. The efficacy and safety of mycotoxin detoxifiers (bentonite and fumonisin esterase) to mitigate these effects were also assessed. Laying hens (400) were divided into 20 groups and fed a control, moderate (54.6 µg/kg feed) or high (546 µg/kg feed) AFB1 or FBs (7.9 mg/kg feed) added diets, either alone or in combination, with the mycotoxin detoxifiers added in selected diets. Productivity was evaluated by feed intake, egg weight, egg production, and feed conversion ratio whereas health was assessed by organ weights, blood biochemistry, and mortality. Aflatoxins residues in plasma, liver, muscle, and eggs were determined using UHPLC-MS/MS methods. A diet with AFB1 at a concentration of 546 µg/kg feed decreased egg production and various AFB1-contaminated diets increased serum uric acid levels and weights of liver, spleen, heart, and gizzard. Interactions between AFB1 and FBs significantly impacted spleen, heart, and gizzard weights as well as AFB1 residues in eggs. Maximum AFB1 residues of 0.64 µg/kg and aflatoxin M1 (below limits of quantification) were observed in liver, plasma, and eggs of layers fed diets with AFB1. The mycotoxin detoxifiers reduced effects of AFB1 and FBs on egg production, organ weights, blood biochemistry, and AFB1 residues in tissues. This study highlights the importance of mycotoxin detoxifiers as a mitigation strategy against mycotoxins in poultry production.
RESUMEN
In sepsis, limited food intake and increased energy expenditure induce a starvation response, which is compromised by a quick decline in the expression of hepatic PPARα, a transcription factor essential in intracellular catabolism of free fatty acids. The mechanism upstream of this PPARα downregulation is unknown. We found that sepsis causes a progressive hepatic loss-of-function of HNF4α, which has a strong impact on the expression of several important nuclear receptors, including PPARα. HNF4α depletion in hepatocytes dramatically increases sepsis lethality, steatosis, and organ damage and prevents an adequate response to IL6, which is critical for liver regeneration and survival. An HNF4α agonist protects against sepsis at all levels, irrespectively of bacterial loads, suggesting HNF4α is crucial in tolerance to sepsis. In conclusion, hepatic HNF4α activity is decreased during sepsis, causing PPARα downregulation, metabolic problems, and a disturbed IL6-mediated acute phase response. The findings provide new insights and therapeutic options in sepsis.
Asunto(s)
Factor Nuclear 4 del Hepatocito , Hepatocitos , PPAR alfa , Sepsis , Factor Nuclear 4 del Hepatocito/metabolismo , Factor Nuclear 4 del Hepatocito/genética , Sepsis/microbiología , Sepsis/metabolismo , Animales , PPAR alfa/metabolismo , Ratones , Hepatocitos/metabolismo , Interleucina-6/metabolismo , Interleucina-6/genética , Ratones Endogámicos C57BL , Hígado/metabolismo , Hígado/patología , Humanos , Reprogramación MetabólicaRESUMEN
The pharmacokinetics and residue depletion of doxycycline (DOX) in striped catfish (Pagasianodon hypophthalmus) after oral dosage were investigated. The pharmacokinetic experiment was conducted in an aquarium, while the experiment of residue depletion was performed in both an aquarium and earth ponds. Medicated feed was administered orally using the gavage method at a dosage of 20 mg/kg body weight. Blood, liver, and kidney from medicated fish samples were collected. In the depletion experiments, fish were fed medicated feed for five consecutive days at a dosage of 20 mg/kg body weight, with samples collected during and after medication. The concentrations of DOX were quantified using an LC-MS/MS system. The pharmacokinetics parameters of DOX in striped catfish included the absorption rate constant (ka), absorption half-life (T1/2abs), maximal plasma concentration (Cmax), time to maximal plasma concentration (Tmax), and area under the plasma concentration-time curve from time 0 to 96 h (AUC0-96 h) which were 0.12 h-1, 5.68 h, 1123.45 ng/mL, 8.19 h, and 25,018 ng/mL/h, respectively. Residue depletion results indicated that the withdrawal times of DOX in muscle (with skin) from fish kept in the aquarium were slightly longer than that in fish raised in earth ponds, corresponding to 194 degree-days compared with 150 degree-days. In conclusion, administration of DOX at the dosage of 20 mg/kg body weight can be used for treatment of bacterial infections in striped catfish, and a withdrawal time of 5 days at 29.4°C will ensure consumer food safety due to the rapid depletion of DOX from muscle and skin.
RESUMEN
Zearalenone (ZEN) is a prevalent mycotoxin found in grains and grain-derived products, inducing adverse health effects in both animals and humans. The in-field application of microorganisms to degrade and detoxify ZEN is a promising strategy to enhance the safety of food and feed. In this study, we investigated the potential of three actinobacterial strains to degrade and detoxify ZEN in vitro and in planta on wheat ears. The residual ZEN concentration and toxicity in the samples were analysed with UHPLC-MS/MS and a bioluminescence BLYES assay, respectively. Streptomyces rimosus subsp. rimosus LMG19352 could completely degrade and detoxify 5 mg/L ZEN in LB broth within 24 h, along with significant reductions in ZEN concentration both in a minimal medium (MM) and on wheat ears. Additionally, it was the only strain that showed a significant colonisation of these ears. Rhodococcus sp. R25614 exhibited partial but significant degradation in LB broth and MM, whereas Streptomyces sp. LMG16995 degraded and detoxified ZEN in LB broth after 72 h by 39% and 33%, respectively. Although all three actinobacterial strains demonstrated the metabolic capability to degrade and detoxify ZEN in vitro, only S. rimosus subsp. rimosus LMG19352 showed promising potential to mitigate ZEN in planta. This distinction underscores the importance of incorporating in planta screening assays for assessing the potential of mycotoxin-biotransforming microorganisms as biocontrol agents.
Asunto(s)
Agentes de Control Biológico , Triticum , Zearalenona , Zearalenona/metabolismo , Zearalenona/toxicidad , Triticum/microbiología , Agentes de Control Biológico/metabolismo , Streptomyces/metabolismo , Actinobacteria/metabolismo , Contaminación de Alimentos/prevención & control , Espectrometría de Masas en TándemRESUMEN
Lupins are used in animal feed because of their excellent nutritional composition. Australian and European Lupinus angustifolius seeds are incorporated in compound feed of calves for veal production in Belgium. To investigate the co-occurrence of quinolizidine alkaloids (QAs) and phomopsin A (PHO A) in lupin seeds and lupin-containing feed, and the potential transfer to animal-derived foods, representative samples were obtained from various actors in the chain. A UHPLC-MS/MS method was validated for the simultaneous quantification of seven QAs and PHO A in relevant matrices. Results indicate highly consistent total QA (TQA) levels in Australian lupins (173 ± 24 mg/kg) (n = 25), while European samples showed a high variability (1442 ± 1497 mg/kg) (n = 15). PHO A was detected in 7 of 40 samples. Lupin-containing feed had a mean TQA content of 42 ± 28 mg/kg (n = 20). An in vivo feeding trial demonstrated the transfer of QAs to muscle and liver of calves that were fed the lupin-containing feed. Highest concentrations were found for lupanine in liver tissue samples (67 ± 46 µg/kg). PHO A concentrations were below the LOD in all feed and tissue samples. These results indicate that animal-derived foods (veal meat/liver) are a potential route for QAs to enter the food chain.
Asunto(s)
Alimentación Animal , Lupinus , Alcaloides de Quinolizidina , Animales , Bovinos , Alimentación Animal/análisis , Cromatografía Líquida de Alta Presión , Contaminación de Alimentos/análisis , Lupinus/química , Alcaloides de Quinolizidina/análisis , Alcaloides de Quinolizidina/química , Espectrometría de Masas en TándemRESUMEN
Broiler chickens in livestock production face numerous challenges that can impact their health and welfare, including mycotoxin contamination and heat stress. In this study, we aimed to investigate the combined effects of two mycotoxins, deoxynivalenol (DON) and fumonisins (FBs), along with short-term heat stress conditions, on broiler gut health and endotoxin translocation. An experiment was conducted to assess the impacts of mycotoxin exposure on broilers, focusing on intestinal endotoxin activity, gene expression related to gut barrier function and inflammation, and the plasma concentration of the endotoxin marker 3-OH C14:0 either at thermoneutral conditions or short-term heat stress conditions. Independently of heat stress, broilers fed DON-contaminated diets exhibited reduced body weight gain during the starter phase (Day 1-12) compared to the control group, while broilers fed FB-contaminated diets experienced decreased body weight gain throughout the entire trial period (Day 1-24). Furthermore, under thermoneutral conditions, broilers fed DON-contaminated diets showed an increase in 3-OH C14:0 concentration in the plasma. Moreover, under heat stress conditions, the expression of genes related to gut barrier function (Claudin 5, Zonulin 1 and 2) and inflammation (Toll-like receptor 4, Interleukin-1 beta, Interleukin-6) was significantly affected by diets contaminated with mycotoxins, depending on the gut segment. This effect was particularly prominent in broilers fed diets contaminated with FBs. Notably, the plasma concentration of 3-OH C14:0 increased in broilers exposed to both DON- and FB-contaminated diets under heat stress conditions. These findings shed light on the intricate interactions between mycotoxins, heat stress, gut health, and endotoxin translocation in broiler chickens, highlighting the importance of understanding these interactions for the development of effective management strategies in livestock production to enhance broiler health and welfare.
Asunto(s)
Alimentación Animal , Pollos , Endotoxinas , Contaminación de Alimentos , Fusarium , Tricotecenos , Animales , Pollos/microbiología , Endotoxinas/sangre , Tricotecenos/toxicidad , Fumonisinas/toxicidad , Masculino , Dieta/veterinaria , Respuesta al Choque Térmico/efectos de los fármacos , Micotoxinas/toxicidadRESUMEN
Poultry may face simultaneous exposure to aflatoxin B1 (AFB1) and tiamulin (TIA), given mycotoxin contamination and antibiotic use. As both mycotoxins and antibiotics can affect cytochrome P450 enzymes (CYP450), our study aimed to explore their interaction. We developed UHPLC-MS/MS methods for the first-time determination of the interaction between TIA and AFB1 in vitro and in vivo in broiler chickens. The inhibition assay showed the half maximal inhibitory concentration (IC50) values of AFB1 and TIA in chicken liver microsomes are more than 7.6 µM, indicating an extremely weak inhibitory effect on hepatic enzymes. Nevertheless, the oral TIA pharmacokinetic results indicated that AFB1 significantly increased the area under the plasma concentration-time curve (AUClast) of TIA by 167% (p < 0.01). Additionally, the oral AFB1 pharmacokinetics revealed that TIA increased the AUClast and mean residence time (MRT) of AFB1 by 194% (p < 0.01) and 136%, respectively. These results suggested that the observed inhibition may be influenced by other factors, such as transport. Therefore, it is meaningful to further explore transport and other enzymes, involved in the interaction between AFB1 and TIA. Furthermore, additional clinical studies are necessary to thoroughly assess the safety of co-exposure with mycotoxins and antibiotics.
Asunto(s)
Aflatoxina B1 , Pollos , Animales , Espectrometría de Masas en Tándem , Sistema Enzimático del Citocromo P-450 , Antibacterianos , DiterpenosRESUMEN
Contamination with mycotoxins has been a worldwide food safety concern for several decades, and food processing has been suggested as a potential method to mitigate their presence. In this study, the influence of traditional dehulling (TD) on the mycotoxin reduction and metabolites profile of fermented white maize products obtained via natural and three controlled fermentation methods (involving Lactobacillus fermentum, Lactobacillus plantarum, and their mixed cultures) was examined. Gas chromatography coupled with high resolution time-of-flight mass spectrometry (GC-HRTOF-MS) and ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) were employed. TD brought the levels of fumonisin B1 (FB1) and B2 (FB2) in the white maize below the regulatory limit set by the European Union (EU) for maize consumed by humans. While TD increased the concentration of several mycotoxins in the fermented maize products obtained from other studied fermentation methods, it primarily reduced aflatoxin B1 (AFB1), FB1, deoxynivalenol, and 15-acetyldeoxynivalenol in the L. plantarum-fermented products. By tempering the dehulled maize, a solid-state fermentation process began. This was used in TD to make it easier to remove the pericarp. GC-HR-TOF-MS metabolomics revealed that TD brought about the generation of 12 additional compounds in the dehulled maize though some metabolites in the whole maize were lost/biotransformed. The fermented dehulled maize products obtained from the four studied fermentation procedures contained fewer compounds than the fermented whole maize products. Overall, the analysis showed that all fermented maize (whole and dehulled) produced had varied nutritional metabolites and mycotoxin concentrations below the EU maximum level, except for fermented maize obtained from mixed strains (AFB1 + AFB2 > 4.0 g/kg).
RESUMEN
BACKGROUND: Serum symmetric dimethylarginine (SDMA) is used to screen for renal dysfunction in dogs. The gold standard technique for measuring SDMA, liquid chromatography-tandem mass spectrometry (LC-MS/MS) is not widely available. Age-specific reference intervals for SDMA in older dogs are lacking. OBJECTIVES: Prospective study in older dogs to validate a commercially available LC-MS/MS method for SDMA, compare SDMA concentrations with concentrations measured using ELISA and obtain a reference interval (RI) for older dogs using both methods. ANIMALS: Client-owned older dogs undergoing health screening. METHODS: The LC-MS/MS method was analytically validated (limit of detection, precision, and linearity). Serum was sent cooled overnight for ELISA or was frozen at -80°C until batch analysis using LC-MS/MS. Results of LC-MS/MS and ELISA were compared and RIs for older dogs were calculated according to international guidelines. RESULTS: The LC-MS/MS method showed good linearity (r2 = .99) and precision (coefficient of variation <10%), with a laboratory RI between 8.0 and 14.0 µg/dL. Paired measurements were available from 118 different dogs. Median SDMA concentration were 9.4 (range, 5.0-21.2) using LC-MS/MS and 12.0 (range, 5.0-22.0) µg/dL using ELISA. Both methods significantly differed with a mean difference of 2.2 µg/dL. The RI for older dogs for LC-MS/MS was 4.4-15.0 µg/dL, and for ELISA was 6.4-17.4 µg/dL. CONCLUSIONS AND CLINICAL IMPORTANCE: The ELISA provided significantly higher SDMA concentrations compared to the validated LC-MS/MS method, indicating the need for device- or assay-specific RI. The obtained age-specific RI for SDMA is considerably higher in older dogs compared to the general laboratory RI.
Asunto(s)
Arginina/análogos & derivados , Enfermedades de los Perros , Insuficiencia Renal Crónica , Humanos , Perros , Animales , Cromatografía Liquida/veterinaria , Estudios Prospectivos , Espectrometría de Masas en Tándem/veterinaria , Insuficiencia Renal Crónica/veterinaria , Ensayo de Inmunoadsorción Enzimática/veterinaria , Biomarcadores , Enfermedades de los Perros/diagnósticoRESUMEN
AIMS: Lisinopril, an angiotensin-converting enzyme inhibitor, is a frequently prescribed antihypertensive drug in the paediatric population, while being used off-label under the age of 6 years in the USA and for all paediatric patients globally. The SAFEPEDRUG project (IWT-130033) investigated lisinopril pharmacokinetics in hypertensive paediatric patients corresponding with the day-to-day clinical population. METHODS: The dose-escalation pilot study included 13 children with primary and secondary hypertension who received oral lisinopril once daily in the morning; doses ranged from 0.05 to 0.2 mg kg-1 . Patients were aged between 1.9 and 17.9 years (median 13.5 years) and weight ranged between 9.62 and 97.2 kg (median 53.2 kg). All data were analysed using Monolix version 2020R1 (Lixoft, France) and R version 3.6.2. RESULTS: A 1-compartment model with first-order absorption and first-order elimination optimally describes the data. Parameter estimates of absorption rate constant (0.075 h-1 [0.062, 0.088], typical value [95% confidence interval]), volume of distribution (31.38 L 70 kg-1 [10.5, 52.3]) and elimination clearance (24.2 L h-1 70 kg-1 [19.5, 28.9]) show good predictive ability. Significant covariate effects include total body weight on elimination clearance, and distribution volume and estimated glomerular filtration rate (eGFR) on elimination clearance. The effects of eGFR on the elimination clearance are optimally described by a linear effect centred around 105 mL min-1 1.73 m-2 . The effects of body weight were implemented using fixed allometric exponents centred around an adult weight of 70 kg. CONCLUSION: Lisinopril dose and regimen adjustments for paediatric patients should include eGFR on top of weight adjustments. An expanded model characterizing the pharmacodynamic effect is required to identify the optimal dose and dosing regimen.
Asunto(s)
Hipertensión , Lisinopril , Adulto , Humanos , Adolescente , Niño , Lactante , Preescolar , Lisinopril/efectos adversos , Proyectos Piloto , Hipertensión/tratamiento farmacológico , Hipertensión/inducido químicamente , Riñón , Peso CorporalRESUMEN
BACKGROUND: Augmented renal clearance (ARC) holds a risk of subtherapeutic drug concentrations. Knowledge of patient-, disease-, and therapy-related factors associated with ARC would allow predicting which patients would benefit from intensified dosing regimens. This study aimed to identify ARC predictors and to describe ARC time-course in critically ill children, using iohexol plasma clearance (CLiohexol) to measure glomerular filtration rate (GFR). METHODS: This is a retrospective analysis of data from the "IOHEXOL" study which validated GFR estimating formulas (eGFR) against CLiohexol. Critically ill children with normal serum creatinine were included, and CLiohexol was performed as soon as possible after pediatric intensive care unit (PICU) admission (CLiohexol1) and repeated (CLiohexol2) after 48-72 h whenever possible. ARC was defined as CLiohexol exceeding normal GFR for age plus two standard deviations. RESULTS: Eighty-five patients were included; 57% were postoperative patients. Median CLiohexol1 was 122 mL/min/1.73 m2 (IQR 75-152). Forty patients (47%) expressed ARC on CLiohexol1. Major surgery other than cardiac surgery and eGFR were found as independent predictors of ARC. An eGFR cut-off value of 99 mL/min/1.73 m2 and 140 mL/min/1.73 m2 was suggested to identify ARC in children under and above 2 years, respectively. ARC showed a tendency to persist on CLiohexol2. CONCLUSIONS: Our findings raise PICU clinician awareness about increased risk for ARC after major surgery and in patients with eGFR above age-specific thresholds. This knowledge enables identification of patients with an ARC risk profile who would potentially benefit from a dose increase at initiation of treatment to avoid underexposure. TRIAL REGISTRATION: ClinicalTrials.gov NCT05179564, registered retrospectively on January 5, 2022.
Asunto(s)
Enfermedad Crítica , Yohexol , Niño , Humanos , Creatinina , Enfermedad Crítica/terapia , Tasa de Filtración Glomerular , Pruebas de Función Renal , Estudios RetrospectivosRESUMEN
Congenital diaphragmatic hernia (CDH) is a congenital malformation characterized by pulmonary hypoplasia, pulmonary hypertension, and cardiac dysfunction. Pulmonary hypertension represents the major cause of neonatal mortality and morbidity. Prenatal diagnosis allows assessment of severity and selection of foetal surgery candidates. We have shown that treprostinil, a prostacyclin analogue with an anti-remodelling effect, attenuates the relative hypermuscularization of the pulmonary vasculature in rats with nitrofen-induced CDH. Here we confirm these observations in a large animal model of surgically-created CDH. In the rabbit model, subcutaneous maternal administration of treprostinil at 150 ng/kg/min consistently reached target foetal concentrations without demonstrable detrimental foetal or maternal adverse effects. In pups with CDH, prenatal treprostinil reduced pulmonary arteriolar proportional medial wall thickness and downregulated inflammation and myogenesis pathways. No effect on alveolar morphometry or lung mechanics was observed. These findings provide further support towards clinical translation of prenatal treprostinil for CDH.
Asunto(s)
Hernias Diafragmáticas Congénitas , Hipertensión Pulmonar , Embarazo , Femenino , Conejos , Ratas , Animales , Hernias Diafragmáticas Congénitas/tratamiento farmacológico , Hipertensión Pulmonar/metabolismo , Ratas Sprague-Dawley , Pulmón/metabolismo , Éteres Fenílicos/efectos adversos , Éteres Fenílicos/metabolismo , Modelos Animales de EnfermedadRESUMEN
Berberine is an isoquinoline alkaloid found in plants. It presents a wide range of pharmacological activities, including anti-inflammatory and antioxidant properties, despite a low oral bioavailability. Growing evidence suggests that the gut microbiota is the target of berberine, and that the microbiota metabolizes berberine to active metabolites, although little evidence exists in the specific species involved in its therapeutic effects. This study was performed to detail the bidirectional interactions of berberine with the broiler chicken gut microbiota, including the regulation of gut microbiota composition and metabolism by berberine and metabolization of berberine by the gut microbiota, and how they contribute to berberine-mediated effects on gut health. As previous evidence showed that high concentrations of berberine may induce dysbiosis, low (0.1 g/kg feed), middle (0.5 g/kg feed) and high (1 g/kg feed) doses were here investigated. Low and middle doses of in-feed berberine stimulated potent beneficial bacteria from the Lachnospiraceae family in the large intestine of chickens, while middle and high doses tended to increase villus length in the small intestine. Plasma levels of the berberine-derived metabolites berberrubine, thalifendine and demethyleneberberine were positively correlated with the villus length of chickens. Berberrubine and thalifendine were the main metabolites of berberine in the caecum, and they were produced in vitro by the caecal microbiota, confirming their microbial origin. We show that members of the genus Blautia could demethylate berberine into mainly thalifendine, and that this reaction may stimulate the production of short-chain fatty acids (SCFAs) acetate and butyrate, via acetogenesis and cross-feeding respectively. We hypothesize that acetogens such as Blautia spp. are key bacteria in the metabolization of berberine, and that berberrubine, thalifendine and SCFAs play a significant role in the biological effect of berberine.
RESUMEN
Porcine ear necrosis (PEN) is characterized by ulcerative lesions of the ear auricle. To investigate that problem, three farms with PEN in nursery pigs were included, and the study aim was to characterize PEN and the potential role of pathogens and mycotoxins. Within each farm, one batch of weaned piglets was included and the prevalence and severity of PEN were monitored for 6-7 weeks. Within each batch, 30 PEN-affected/non-affected animals were randomly selected. Blood samples were taken from these animals, to assess the systemic presence of pathogens and mycotoxins, as well as punch biopsies from the ear auricle for histopathological examination. From 10 animals, scrapings and swabs from the lesions were subjected to nanopore metagenomic sequencing and bacteriological cultivation, respectively. In all three farms, lesions appeared within 3-4 weeks post-weaning. The prevalence at the end of the nursery was 33%, 24%, and 46% for farms A, B, and C, respectively. Most affected pigs had mild to moderate lesions. Blood samples revealed low to very low levels of pathogens and mycotoxins. Different bacteria such as Staphylococcus, Streptococcus, Fusobacterium, Mycoplasma, and Clostridium species were identified by sequencing in the scrapings. The first two pathogens were also most often identified in bacterial cultures. Mycoplasma hyopharyngis was only found in PEN-affected pigs. Histopathological changes were primarily observed in the outer layer of the epidermis. The results suggest that PEN lesions develop by damage to the outer part of the skin e.g. by ear suckling or biting, followed by multiplication of opportunistic pathogens.
Asunto(s)
Mordeduras y Picaduras , Micotoxinas , Enfermedades de los Porcinos , Animales , Porcinos , Mordeduras y Picaduras/veterinaria , Enfermedades de los Porcinos/patología , Necrosis/veterinaria , PielRESUMEN
The current study evaluated the effects of feeding diets contaminated with aflatoxin B1 (AFB1), fumonisins (FBs), or both on the performance and health of broiler chickens and the safety of their food products as well as the efficacy of bentonite and fumonisin esterase to mitigate the effects of these mycotoxins under conditions representative for sub-Saharan Africa (SSA). Four hundred one-day-old Cobb 500 broiler chickens were randomly assigned to 20 treatments with either a control diet, a diet with moderate AFB1 (60 µg/kg feed) or high AFB1 (220 µg/kg feed), or FBs (17,430 µg FB1+FB2/kg feed), alone or in combination, a diet containing AFB1 (either 60 or 220 µg/kg) and/or FBs (17,430 µg FB1+FB2/kg) and bentonite or fumonisin esterase or both, or a diet with bentonite or fumonisin esterase only. The experimental diets were given to the birds from day 1 to day 35 of age, and the effects of the different treatments on production performance were assessed by feed intake (FI), body weight gain (BWG), and feed conversion ratio (FCR). Possible health effects were evaluated through blood biochemistry, organ weights, mortality, liver gross pathological changes, and vaccine response. Residues of aflatoxins (AFB1, B2, G1, G2, M1 and M2) were determined in plasma, muscle, and liver tissues using validated UHPLC-MS/MS methods. The results obtained indicated that broiler chickens fed high AFB1 alone had poor FCR when compared to a diet with both high AFB1 and FBs (p = 0.0063). Serum total protein and albumin from birds fed FBs only or in combination with moderate or high AFB1 or detoxifiers increased when compared to the control (p < 0.05). Liver gross pathological changes were more pronounced in birds fed contaminated diets when compared to birds fed the control or diets supplemented with mycotoxin detoxifiers. The relative weight of the heart was significantly higher in birds fed high AFB1 and FBs when compared to the control or high AFB1 only diets (p < 0.05), indicating interactions between the mycotoxins. Inclusion of bentonite in AFB1-contaminated diets offered a protective effect on the change in weights of the liver, heart and spleen (p < 0.05). Residues of AFB1 were detected above the limit of quantification (max: 0.12 ± 0.03 µg/kg) in liver samples only, from birds fed a diet with high AFB1 only or with FBs or the detoxifiers. Supplementing bentonite into these AFB1-contaminated diets reduced the levels of the liver AFB1 residues by up to 50%. Bentonite or fumonisin esterase, alone, did not affect the performance and health of broiler chickens. Thus, at the doses tested, both detoxifiers were safe and efficient for use as valid means of counteracting the negative effects of AFB1 and FBs as well as transfer of AFB1 to food products (liver) of broiler chickens.
Asunto(s)
Aflatoxinas , Fumonisinas , Micotoxinas , Animales , Aflatoxinas/toxicidad , Pollos , Fumonisinas/toxicidad , Bentonita , Espectrometría de Masas en Tándem , Aflatoxina B1/toxicidad , EsterasasRESUMEN
AIM: Histidine-containing dipeptides (HCDs) are pleiotropic homeostatic molecules with potent antioxidative and carbonyl quenching properties linked to various inflammatory, metabolic, and neurological diseases, as well as exercise performance. However, the distribution and metabolism of HCDs across tissues and species are still unclear. METHODS: Using a sensitive UHPLC-MS/MS approach and an optimized quantification method, we performed a systematic and extensive profiling of HCDs in the mouse, rat, and human body (in n = 26, n = 25, and n = 19 tissues, respectively). RESULTS: Our data show that tissue HCD levels are uniquely produced by carnosine synthase (CARNS1), an enzyme that was preferentially expressed by fast-twitch skeletal muscle fibres and brain oligodendrocytes. Cardiac HCD levels are remarkably low compared to other excitable tissues. Carnosine is unstable in human plasma, but is preferentially transported within red blood cells in humans but not rodents. The low abundant carnosine analogue N-acetylcarnosine is the most stable plasma HCD, and is enriched in human skeletal muscles. Here, N-acetylcarnosine is continuously secreted into the circulation, which is further induced by acute exercise in a myokine-like fashion. CONCLUSION: Collectively, we provide a novel basis to unravel tissue-specific, paracrine, and endocrine roles of HCDs in human health and disease.
Asunto(s)
Carnosina , Dipéptidos , Humanos , Ratas , Ratones , Animales , Dipéptidos/química , Dipéptidos/metabolismo , Dipéptidos/farmacología , Carnosina/metabolismo , Carnosina/farmacología , Histidina/química , Histidina/metabolismo , Espectrometría de Masas en Tándem , AntioxidantesRESUMEN
Cephalosporins are licensed for treatment of severe bacterial infections in different species. However, the effect of these antimicrobials on the fecal microbiome and potential spread of resistance-associated genes causes great concern. This highlights the need to understand the impact of cephalosporins on the porcine fecal microbiome and resistome. A combination of long-read 16S rRNA gene and shotgun metagenomic sequencing was applied to investigate the effect of conventional treatment with either ceftiofur (3 mg.kg-1 intramuscular, 3 consecutive days) or cefquinome (2 mg.kg-1 intramuscular, 5 consecutive days) on the porcine microbiome and resistome. Fecal samples were collected from 17 pigs (6 ceftiofur treated, 6 cefquinome treated, 5 control pigs) at four different timepoints. Treatment with ceftiofur resulted in an increase in Proteobacteria members on microbiome level, while on resistome level selection in TetQ containing Bacteroides, CfxA6 containing Prevotella and blaTEM-1 containing Escherichia coli was observed. Cefquinome treatment resulted in a decline in overall species richness (α-diversity) and increase in Proteobacteria members. On genus level, administration of cefquinome significantly affected more genera than ceftiofur (18 vs 8). On resistome level, cefquinome resulted in a significant increase of six antimicrobial resistance genes, with no clear correlation with certain genera. For both antimicrobials, the resistome levels returned back to the control levels 21 days post-treatment. Overall, our study provides novel insights on the effect of specific cephalosporins on the porcine gut microbiome and resistome after conventional intramuscular treatment. These results might contribute to better tailoring of the most ideal treatment strategy for some bacterial infections.
Asunto(s)
Antiinfecciosos , Microbioma Gastrointestinal , Porcinos , Animales , Antibacterianos/uso terapéutico , ARN Ribosómico 16S/genética , Cefalosporinas/farmacología , Heces/microbiología , Antiinfecciosos/farmacología , Escherichia coli/genéticaRESUMEN
Obesity, which is a worldwide public health issue, is associated with chronic inflammation that contribute to long-term complications, including insulin resistance, type 2 diabetes and non-alcoholic fatty liver disease. We hypothesized that obesity may also influence the sensitivity to food contaminants, such as fumonisin B1 (FB1), a mycotoxin produced mainly by the Fusarium verticillioides. FB1, a common contaminant of corn, is the most abundant and best characterized member of the fumonisins family. We investigated whether diet-induced obesity could modulate the sensitivity to oral FB1 exposure, with emphasis on gut health and hepatotoxicity. Thus, metabolic effects of FB1 were assessed in obese and non-obese male C57BL/6J mice. Mice received a high-fat diet (HFD) or normal chow diet (CHOW) for 15 weeks. Then, during the last three weeks, mice were exposed to these diets in combination or not with FB1 (10 mg/kg body weight/day) through drinking water. As expected, HFD feeding induced significant body weight gain, increased fasting glycemia, and hepatic steatosis. Combined exposure to HFD and FB1 resulted in body weight loss and a decrease in fasting blood glucose level. This co-exposition also induces gut dysbiosis, an increase in plasma FB1 level, a decrease in liver weight and hepatic steatosis. Moreover, plasma transaminase levels were significantly increased and associated with liver inflammation in HFD/FB1-treated mice. Liver gene expression analysis revealed that the combined exposure to HFD and FB1 was associated with reduced expression of genes involved in lipogenesis and increased expression of immune response and cell cycle-associated genes. These results suggest that, in the context of obesity, FB1 exposure promotes gut dysbiosis and severe liver inflammation. To our knowledge, this study provides the first example of obesity-induced hepatitis in response to a food contaminant.
Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Diabetes Mellitus Tipo 2 , Fumonisinas , Ratones , Masculino , Animales , Fumonisinas/toxicidad , Fumonisinas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Disbiosis , Ratones Endogámicos C57BL , Hígado/metabolismo , Obesidad/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Inflamación/inducido químicamenteRESUMEN
Intestinal integrity losses have been identified as a main driver for poor performance in broilers. The oral administration of markers such as iohexol is a major asset for measuring intestinal permeability (IP) alterations. The aim of the current study was to evaluate oral iohexol administration and serum levels as a quantitative measure for IP in Ross 308 broilers and to identify possible associations with histologic measurements. A total of 40, day-old broiler chickens were randomly divided into 4 groups of 10 broilers and a coccidiosis model was used to induce IP. Three challenge groups received a mixture of different field strains and concentrations of Eimeria acervulina and Eimeria maxima at d 16, and 1 group operated as an uninfected control group. On d 20, 5 birds per group were orally administered the permeability marker iohexol at a dose of 64.7 mg/kg body weight and blood was taken 60 min after the oral gavage. On d 21 these 5 birds per group were euthanized. On d 21, 5 other birds per group were given iohexol where after blood was taken. These birds were euthanized on d 22. During necropsy, birds were scored for coccidiosis lesions and a duodenal segment was taken for histology. The Eimeria challenge had a significant impact on the villus length, crypt depth, villus-to-crypt ratio and CD3+ T-lymphocytes area percentage. Challenged birds had a significant higher concentration of serum iohexol on both sampling days, as compared to the uninfected controls. A significant correlation could be found between the serum iohexol concentration and the histologic parameters (villus length, crypt depth and villus-to-crypt ratio) on the first sampling day. This suggests that iohexol may be used as a gut permeability marker in broilers under Eimeria challenge.