Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Perinatol ; 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38851854

RESUMEN

The duration of the majority of fellowships in pediatrics has been three-years. With increasing shortages of some outpatient-based pediatric subspecialists, shorter two-year fellowships are being considered for clinically oriented trainees not interested in a career based on research. Shortening the duration of fellowship may have some financial merits such as achieving a higher salary earlier after shorter training. However, we feel that continuing with a three-year duration for neonatology is more pragmatic at this time due to reductions in intensive care rotations during residency, time required to  achieve procedural excellence, the need for exposure to quality assurance methodology, proficiency in novel techniques such as bedside ultrasound, and to maintain the physician-scientist pipeline. The demand for neonatal fellowship continues to be high. Ongoing evaluation of the job market, training needs and fellowship curriculum is needed to determine if the duration of fellowship should be altered in the future.

2.
Cancer Discov ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38742767

RESUMEN

Meningiomas are the most common primary intracranial tumors. Treatments for patients with meningiomas are limited to surgery and radiotherapy, and systemic therapies remain ineffective or experimental. Resistance to radiotherapy is common in high-grade meningiomas and the cell types and signaling mechanisms that drive meningioma tumorigenesis and resistance to radiotherapy are incompletely understood. Here we report NOTCH3 drives meningioma tumorigenesis and resistance to radiotherapy and find that perivascular NOTCH3+ stem cells are conserved across meningiomas from humans, dogs, and mice. Integrating single-cell transcriptomics with lineage tracing and imaging approaches in genetically engineered mouse models and xenografts, we show NOTCH3 drives tumor initiating capacity, cell proliferation, angiogenesis, and resistance to radiotherapy to increase meningioma growth and reduce survival. To translate these findings to patients, we show that an antibody stabilizing the extracellular negative regulatory region of NOTCH3 blocks meningioma tumorigenesis and sensitizes meningiomas to radiotherapy, reducing tumor growth and improving survival.

3.
Neurosci Insights ; 19: 26331055241235921, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38476695

RESUMEN

Brain development and function are highly reliant on adequate establishment and maintenance of vascular networks. Early impairments in vascular health can impact brain maturation and energy metabolism, which may lead to neurodevelopmental anomalies. Our recent work not only provides novel insights into the development of cerebrovascular networks but also emphasizes the importance of their well-being for proper brain maturation. In particular, we have demonstrated that endothelial dysfunction in autism spectrum disorders (ASD) mouse models is causally related to altered behavior and brain metabolism. In the prenatal human brain, vascular cells change metabolic states in the second trimester. Such findings highlight the need to identify new cellular and molecular players in neurodevelopmental disorders, raising awareness about the importance of a healthy vasculature for brain development. It is thus essential to shift the mostly neuronal point of view in research on ASD and other neurodevelopmental disorders to also include vascular and metabolic features.

4.
Nat Protoc ; 19(3): 603-628, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38102365

RESUMEN

Angiogenesis and neurogenesis are functionally interconnected during brain development. However, the study of the vasculature has trailed other brain cell types because they are delicate and of low abundance. Here we describe a protocol extension to purify prenatal human brain endothelial and mural cells with FACS and utilize them in downstream applications, including transcriptomics, culture and organoid transplantation. This approach is simple, efficient and generates high yields from small amounts of tissue. When the experiment is completed within a 24 h postmortem interval, these healthy cells produce high-quality data in single-cell transcriptomics experiments. These vascular cells can be cultured, passaged and expanded for many in vitro assays, including Matrigel vascular tube formation, microfluidic chambers and metabolic measurements. Under these culture conditions, primary vascular cells maintain expression of cell-type markers for at least 3 weeks. Finally, we describe how to use primary vascular cells for transplantation into cortical organoids, which captures key features of neurovascular interactions in prenatal human brain development. In terms of timing, tissue processing and staining requires ~3 h, followed by an additional 3 h of FACS. The transplant procedure of primary, FACS-purified vascular cells into cortical organoids requires an additional 2 h. The time required for different transcriptomic and epigenomic protocols can vary based on the specific application, and we offer strategies to mitigate batch effects and optimize data quality. In sum, this vasculo-centric approach offers an integrated platform to interrogate neurovascular interactions and human brain vascular development.


Asunto(s)
Neurogénesis , Organoides , Humanos , Perfilación de la Expresión Génica , Transcriptoma , Encéfalo
5.
JAMA Netw Open ; 6(11): e2341533, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37930699

RESUMEN

Importance: Parents who experience neonatal loss have the option to participate in autopsy, organ donation, and research donation. However, clinicians are uncomfortable discussing autopsy and may not be aware of research and organ donation opportunities. Objective: To capture the perspectives of parents who had experienced neonatal loss about autopsy, organ donation, and research donation. Design, Setting, and Participants: This qualitative study used virtual focus groups with parents who attended a local bereavement support group in the US. Participants were recruited from Helping After Neonatal Death, a support group with a local chapter. Participants self-selected from an email request if they met the following criteria: aged 18 years or older, English speaking, at least 6 months elapsed since neonatal death, and access to a video conference device with internet. Focus groups took place between April and September 2021. The recorded sessions were analyzed using a grounded theory-informed approach by the research team that included parents with experience of neonatal loss. Data were analyzed from December 2021 through December 2022. Results: A total of 14 mothers engaged in the focus group; 9 (75%) were aged 30 to 39 years, and 8 (66%) were White. The mothers were overall well educated. The first main theme grew from the lived experience of neonatal loss, specifically the importance of offering all parents the option to donate, rather than prejudging who would or would not be interested. Parents of neonates who die have few opportunities to parent that child and make loving decisions for them. Participants emphasized that the conversation about autopsy, organ donation, and research donation, albeit difficult, can offer a meaningful parenting experience. A second main theme that emerged related to how organ or tissue donation could provide additional meaning to a child's life. These choices contributed to building a legacy to honor their child's memory, which also helped with grief and coping with their loss. A third theme included recommendations to clinicians and health systems for improving communication, including written information for parents and communication training for health care professionals. Conclusions and Relevance: In this qualitative study, parents who experienced neonatal loss endorsed the importance of offering parents the choice of autopsy, organ donation, or research donation with skillful and empathetic communication. They provided practical recommendations to improve communication and empower families.


Asunto(s)
Muerte Perinatal , Obtención de Tejidos y Órganos , Niño , Recién Nacido , Femenino , Humanos , Autopsia , Padres , Madres
6.
Cell Stem Cell ; 30(10): 1382-1391.e5, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37673072

RESUMEN

Radial glial (RG) development is essential for cerebral cortex growth and organization. In humans, the outer radial glia (oRG) subtype is expanded and gives rise to diverse neurons and glia. However, the mechanisms regulating oRG differentiation are unclear. oRG cells express leukemia-inhibitory factor (LIF) receptors during neurogenesis, and consistent with a role in stem cell self-renewal, LIF perturbation impacts oRG proliferation in cortical tissue and organoids. Surprisingly, LIF treatment also increases the production of inhibitory interneurons (INs) in cortical cultures. Comparative transcriptomic analysis identifies that the enhanced IN population resembles INs produced in the caudal ganglionic eminence. To evaluate whether INs could arise from oRGs, we isolated primary oRG cells and cultured them with LIF. We observed the production of INs from oRG cells and an increase in IN abundance following LIF treatment. Our observations suggest that LIF signaling regulates the capacity of oRG cells to generate INs.


Asunto(s)
Células Ependimogliales , Neurogénesis , Humanos , Diferenciación Celular/fisiología , Neurogénesis/fisiología , Corteza Cerebral , Interneuronas/fisiología
7.
bioRxiv ; 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37503127

RESUMEN

Meningiomas are the most common primary intracranial tumors1-3. Treatments for patients with meningiomas are limited to surgery and radiotherapy, and systemic therapies remain ineffective or experimental4,5. Resistance to radiotherapy is common in high-grade meningiomas6, and the cell types and signaling mechanisms driving meningioma tumorigenesis or resistance to radiotherapy are incompletely understood. Here we report NOTCH3 drives meningioma tumorigenesis and resistance to radiotherapy and find NOTCH3+ meningioma mural cells are conserved across meningiomas from humans, dogs, and mice. NOTCH3+ cells are restricted to the perivascular niche during meningeal development and homeostasis and in low-grade meningiomas but are expressed throughout high-grade meningiomas that are resistant to radiotherapy. Integrating single-cell transcriptomics with lineage tracing and imaging approaches across mouse genetic and xenograft models, we show NOTCH3 drives tumor initiating capacity, cell proliferation, angiogenesis, and resistance to radiotherapy to increase meningioma growth and reduce survival. An antibody stabilizing the extracellular negative regulatory region of NOTCH37,8 blocks meningioma tumorigenesis and sensitizes meningiomas to radiotherapy, reducing tumor growth and improving survival in preclinical models. In summary, our results identify a conserved cell type and signaling mechanism that underlie meningioma tumorigenesis and resistance to radiotherapy, revealing a new therapeutic vulnerability to treat meningiomas that are resistant to standard interventions.

8.
Trends Neurosci ; 46(7): 551-565, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37210315

RESUMEN

The vasculature is increasingly recognized to impact brain function in health and disease across the life span. During embryonic brain development, angiogenesis and neurogenesis are tightly coupled, coordinating the proliferation, differentiation, and migration of neural and glial progenitors. In the adult brain, neurovascular interactions continue to play essential roles in maintaining brain function and homeostasis. This review focuses on recent advances that leverage single-cell transcriptomics of vascular cells to uncover their subtypes, their organization and zonation in the embryonic and adult brain, and how dysfunction in neurovascular and gliovascular interactions contributes to the pathogenesis of neurodegenerative diseases. Finally, we highlight key challenges for future research in neurovascular biology.


Asunto(s)
Encéfalo , Transcriptoma , Adulto , Humanos , Encéfalo/patología , Neurogénesis , Neuroglía , Diferenciación Celular
9.
Pediatr Cardiol ; 44(3): 736-739, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36460799

RESUMEN

Neonatal lupus (NLE) is a rare acquired autoimmune disorder caused by transplacental passage of maternal autoantibodies to Sjogren's Syndrome A or B (SSA-SSB) autoantigens (Vanoni et al. in Clin Rev Allerg Immunol 53:469-476, 2017) which target fetal and neonatal tissues for immune destruction. The cardiac trademark of NLE is autoimmune heart block, which accounts for more than 80% of cases of complete atrioventricular heart block (AVB) in newborns with a structurally normal heart (Martin in Cardiol Young 24: 41-46, 2014). NLE presenting with cardiac alterations not involving rhythm disturbances are described in the literature, but they are rare. Here, we report a case of a neonate with high anti-SSA antibodies who developed severe ventricular dysfunction in the absence of rhythm abnormalities, endocardial fibroelastosis, and dilated cardiomyopathy (Trucco et al. in J Am Coll Cardiol 57:715-723, https://doi.org/10.1016/j.jacc.2010.09.044 , 2011), the most common cardiac presentations of NLE. The patient developed severe multiorgan dysfunction syndrome that required prolonged critical care support but fully recovered and was discharged home. We highlight the unusual clinical features of this NLE case and the importance of timely treatment of NLE allowing complete recovery of a critically ill neonate.


Asunto(s)
Bloqueo Atrioventricular , Enfermedades Autoinmunes , Lupus Eritematoso Sistémico , Complicaciones del Embarazo , Femenino , Humanos , Recién Nacido , Autoanticuerpos , Lupus Eritematoso Sistémico/complicaciones , Lupus Eritematoso Sistémico/diagnóstico , Bloqueo Atrioventricular/diagnóstico , Bloqueo Atrioventricular/etiología , Bloqueo Atrioventricular/terapia
10.
Nat Neurosci ; 25(10): 1353-1365, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36171426

RESUMEN

The precise regulation of gene expression is fundamental to neurodevelopment, plasticity and cognitive function. Although several studies have profiled transcription in the developing human brain, there is a gap in understanding of accompanying translational regulation. In this study, we performed ribosome profiling on 73 human prenatal and adult cortex samples. We characterized the translational regulation of annotated open reading frames (ORFs) and identified thousands of previously unknown translation events, including small ORFs that give rise to human-specific and/or brain-specific microproteins, many of which we independently verified using proteomics. Ribosome profiling in stem-cell-derived human neuronal cultures corroborated these findings and revealed that several neuronal activity-induced non-coding RNAs encode previously undescribed microproteins. Physicochemical analysis of brain microproteins identified a class of proteins that contain arginine-glycine-glycine (RGG) repeats and, thus, may be regulators of RNA metabolism. This resource expands the known translational landscape of the human brain and illuminates previously unknown brain-specific protein products.


Asunto(s)
Regulación de la Expresión Génica , Biosíntesis de Proteínas , Adulto , Arginina/genética , Arginina/metabolismo , Encéfalo/metabolismo , Glicina , Humanos , ARN Mensajero/metabolismo
11.
Cell ; 185(20): 3753-3769.e18, 2022 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-36179668

RESUMEN

Interactions between angiogenesis and neurogenesis regulate embryonic brain development. However, a comprehensive understanding of the stages of vascular cell maturation is lacking, especially in the prenatal human brain. Using fluorescence-activated cell sorting, single-cell transcriptomics, and histological and ultrastructural analyses, we show that an ensemble of endothelial and mural cell subtypes tile the brain vasculature during the second trimester. These vascular cells follow distinct developmental trajectories and utilize diverse signaling mechanisms, including collagen, laminin, and midkine, to facilitate cell-cell communication and maturation. Interestingly, our results reveal that tip cells, a subtype of endothelial cells, are highly enriched near the ventricular zone, the site of active neurogenesis. Consistent with these observations, prenatal vascular cells transplanted into cortical organoids exhibit restricted lineage potential that favors tip cells, promotes neurogenesis, and reduces cellular stress. Together, our results uncover important mechanisms into vascular maturation during this critical period of human brain development.


Asunto(s)
Células Endoteliales , Neovascularización Fisiológica , Encéfalo , Colágeno , Humanos , Laminina , Midkina , Neovascularización Patológica/patología , Neovascularización Fisiológica/fisiología , Pericitos
12.
Proc Natl Acad Sci U S A ; 119(30): e2122236119, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35858406

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) readily infects a variety of cell types impacting the function of vital organ systems, with particularly severe impact on respiratory function. Neurological symptoms, which range in severity, accompany as many as one-third of COVID-19 cases, indicating a potential vulnerability of neural cell types. To assess whether human cortical cells can be directly infected by SARS-CoV-2, we utilized stem-cell-derived cortical organoids as well as primary human cortical tissue, both from developmental and adult stages. We find significant and predominant infection in cortical astrocytes in both primary tissue and organoid cultures, with minimal infection of other cortical populations. Infected and bystander astrocytes have a corresponding increase in inflammatory gene expression, reactivity characteristics, increased cytokine and growth factor signaling, and cellular stress. Although human cortical cells, particularly astrocytes, have no observable ACE2 expression, we find high levels of coronavirus coreceptors in infected astrocytes, including CD147 and DPP4. Decreasing coreceptor abundance and activity reduces overall infection rate, and increasing expression is sufficient to promote infection. Thus, we find tropism of SARS-CoV-2 for human astrocytes resulting in inflammatory gliosis-type injury that is dependent on coronavirus coreceptors.


Asunto(s)
Astrocitos , Corteza Cerebral , SARS-CoV-2 , Tropismo Viral , Enzima Convertidora de Angiotensina 2/metabolismo , Astrocitos/enzimología , Astrocitos/virología , Corteza Cerebral/virología , Humanos , Organoides/virología , Cultivo Primario de Células , SARS-CoV-2/fisiología
13.
Nature ; 601(7893): 397-403, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34912114

RESUMEN

The cerebral cortex is a cellularly complex structure comprising a rich diversity of neuronal and glial cell types. Cortical neurons can be broadly categorized into two classes-excitatory neurons that use the neurotransmitter glutamate, and inhibitory interneurons that use γ-aminobutyric acid (GABA). Previous developmental studies in rodents have led to a prevailing model in which excitatory neurons are born from progenitors located in the cortex, whereas cortical interneurons are born from a separate population of progenitors located outside the developing cortex in the ganglionic eminences1-5. However, the developmental potential of human cortical progenitors has not been thoroughly explored. Here we show that, in addition to excitatory neurons and glia, human cortical progenitors are also capable of producing GABAergic neurons with the transcriptional characteristics and morphologies of cortical interneurons. By developing a cellular barcoding tool called 'single-cell-RNA-sequencing-compatible tracer for identifying clonal relationships' (STICR), we were able to carry out clonal lineage tracing of 1,912 primary human cortical progenitors from six specimens, and to capture both the transcriptional identities and the clonal relationships of their progeny. A subpopulation of cortically born GABAergic neurons was transcriptionally similar to cortical interneurons born from the caudal ganglionic eminence, and these cells were frequently related to excitatory neurons and glia. Our results show that individual human cortical progenitors can generate both excitatory neurons and cortical interneurons, providing a new framework for understanding the origins of neuronal diversity in the human cortex.


Asunto(s)
Linaje de la Célula , Corteza Cerebral , Interneuronas , Inhibición Neural , Neuronas , Corteza Cerebral/citología , Neuronas GABAérgicas/citología , Humanos , Interneuronas/citología , Neuronas/citología
14.
bioRxiv ; 2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33469577

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) readily infects a variety of cell types impacting the function of vital organ systems, with particularly severe impact on respiratory function. It proves fatal for one percent of those infected. Neurological symptoms, which range in severity, accompany a significant proportion of COVID-19 cases, indicating a potential vulnerability of neural cell types. To assess whether human cortical cells can be directly infected by SARS-CoV-2, we utilized primary human cortical tissue and stem cell-derived cortical organoids. We find significant and predominant infection in cortical astrocytes in both primary and organoid cultures, with minimal infection of other cortical populations. Infected astrocytes had a corresponding increase in reactivity characteristics, growth factor signaling, and cellular stress. Although human cortical cells, including astrocytes, have minimal ACE2 expression, we find high levels of alternative coronavirus receptors in infected astrocytes, including DPP4 and CD147. Inhibition of DPP4 reduced infection and decreased expression of the cell stress marker, ARCN1. We find tropism of SARS-CoV-2 for human astrocytes mediated by DPP4, resulting in reactive gliosis-type injury.

15.
Front Physiol ; 11: 600767, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33343397

RESUMEN

The cerebrovasculature is essential to brain health and is tasked with ensuring adequate delivery of oxygen and metabolic precursors to ensure normal neurologic function. This is coordinated through a dynamic, multi-directional cellular interplay between vascular, neuronal, and glial cells. Molecular exchanges across the blood-brain barrier or the close matching of regional blood flow with brain activation are not uniformly assigned to arteries, capillaries, and veins. Evidence has supported functional segmentation of the brain vasculature. This is achieved in part through morphologic or transcriptional heterogeneity of brain vascular cells-including endothelium, pericytes, and vascular smooth muscle. Advances with single cell genomic technologies have shown increasing cell complexity of the brain vasculature identifying previously unknown cell types and further subclassifying transcriptional diversity in cardinal vascular cell types. Cell-type specific molecular transitions or zonations have been identified. In this review, we summarize emerging evidence for the expanding vascular cell diversity in the brain and how this may provide a cellular basis for functional segmentation along the arterial-venous axis.

16.
Cell Rep ; 33(2): 108256, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-33053356

RESUMEN

Angiogenesis and neurogenesis are tightly coupled during embryonic brain development. However, little is known about how these two processes interact. We show that nascent blood vessels actively contact dividing neural stem cells by endothelial filopodia in the ventricular zone (VZ) of the murine ventral telencephalon; this association is conserved in the human ventral VZ. Using mouse mutants with altered vascular filopodia density, we show that this interaction leads to prolonged cell cycle of apical neural progenitors (ANPs) and favors early neuronal differentiation. Interestingly, pharmacological experiments reveal that ANPs induce vascular filopodia formation by upregulating vascular endothelial growth factor (VEGF)-A in a cell-cycle-dependent manner. This mutual relationship between vascular filopodia and ANPs works as a self-regulatory system that senses ANP proliferation rates and rapidly adjusts neuronal production levels. Our findings indicate a function of vascular filopodia in fine-tuning neural stem cell behavior, which is the basis for proper brain development.


Asunto(s)
Células-Madre Neurales/metabolismo , Neurogénesis , Seudópodos/metabolismo , Telencéfalo/irrigación sanguínea , Animales , Ciclo Celular , Diferenciación Celular , Proliferación Celular , Endotelio Vascular/metabolismo , Humanos , Ratones Endogámicos C57BL , Células-Madre Neurales/citología , Neuronas/citología , Seudópodos/ultraestructura , Telencéfalo/ultraestructura , Imagen de Lapso de Tiempo , Regulación hacia Arriba , Factor A de Crecimiento Endotelial Vascular/metabolismo
17.
Brain Res ; 1742: 146803, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32240655

RESUMEN

Rodent models have catalyzed major discoveries in the neocortex, a brain region unique to mammals. However, since the neocortex has expanded considerably in primates, employing rodent models has limitations. Human fetal brain tissue is a scarce resource with limitations for experimental manipulations. In order to create an experimentally tractable representation of human brain development, a number of labs have recently created in vitro models of the developing human brain. These models, generated using human embryonic stem cells or induced pluripotent stem cells, are called "organoids". Organoids have successfully and rapidly uncovered new mechanisms of human brain development in health and disease. In the future, we envision that this strategy will enable faster and more efficient translation of basic neuroscience findings to therapeutic applications. In this review, we discuss the generation of the first human cerebral organoids, progress since their debut, and challenges to be overcome in the future.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Neocórtex/crecimiento & desarrollo , Organoides/crecimiento & desarrollo , Encéfalo/crecimiento & desarrollo , Humanos , Células Madre Pluripotentes Inducidas , Modelos Biológicos , Neocórtex/fisiología , Neurogénesis , Organoides/fisiología
18.
Nat Protoc ; 13(4): 738-751, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29565899

RESUMEN

The vasculature is emerging as a key contributor to brain function during neurodevelopment and in mature physiological and pathological states. The brain vasculature itself also exhibits regional heterogeneity, highlighting the need to develop approaches for purifying cells from different microregions. Previous approaches for isolation of endothelial cells and pericytes have predominantly required transgenic mice and large amounts of tissue, and have resulted in impure populations. In addition, the prospective purification of brain pericytes has been complicated by the fact that widely used pericyte markers are also expressed by other cell types in the brain. Here, we describe the detailed procedures for simultaneous isolation of pure populations of endothelial cells and pericytes directly from adult mouse brain microregions using fluorescence-activated cell sorting (FACS) with antibodies against CD31 (endothelial cells) and CD13 (pericytes). This protocol is scalable and takes ∼5 h, including microdissection of the region of interest, enzymatic tissue dissociation, immunostaining, and FACS. This protocol allows the isolation of brain vascular cells from any mouse strain under diverse conditions; these cells can be used for multiple downstream applications, including in vitro and in vivo experiments, and transcriptomic, proteomic, metabolomic, epigenomic, and single-cell analysis.


Asunto(s)
Encéfalo/citología , Células Endoteliales/fisiología , Citometría de Flujo/métodos , Pericitos/fisiología , Animales , Anticuerpos/metabolismo , Antígenos CD13/metabolismo , Técnica del Anticuerpo Fluorescente , Ratones , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Coloración y Etiquetado/métodos
19.
J Neurosci ; 35(11): 4528-39, 2015 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-25788671

RESUMEN

Adult neural stem cells reside in specialized niches. In the ventricular-subventricular zone (V-SVZ), quiescent neural stem cells (qNSCs) become activated (aNSCs), and generate transit amplifying cells (TACs), which give rise to neuroblasts that migrate to the olfactory bulb. The vasculature is an important component of the adult neural stem cell niche, but whether vascular cells in neurogenic areas are intrinsically different from those elsewhere in the brain is unknown. Moreover, the contribution of pericytes to the neural stem cell niche has not been defined. Here, we describe a rapid FACS purification strategy to simultaneously isolate primary endothelial cells and pericytes from brain microregions of nontransgenic mice using CD31 and CD13 as surface markers. We compared the effect of purified vascular cells from a neurogenic (V-SVZ) and non-neurogenic brain region (cortex) on the V-SVZ stem cell lineage in vitro. Endothelial and pericyte diffusible signals from both regions differentially promote the proliferation and neuronal differentiation of qNSCs, aNSCs, and TACs. Unexpectedly, diffusible cortical signals had the most potent effects on V-SVZ proliferation and neurogenesis, highlighting the intrinsic capacity of non-neurogenic vasculature to support stem cell behavior. Finally, we identify PlGF-2 as an endothelial-derived mitogen that promotes V-SVZ cell proliferation. This purification strategy provides a platform to define the functional and molecular contribution of vascular cells to stem cell niches and other brain regions under different physiological and pathological states.


Asunto(s)
Células Madre Adultas/fisiología , Linaje de la Célula/fisiología , Ventrículos Cerebrales/fisiología , Endotelio Vascular/fisiología , Células-Madre Neurales/fisiología , Neurogénesis/fisiología , Animales , Proliferación Celular/fisiología , Células Cultivadas , Ventrículos Cerebrales/citología , Endotelio Vascular/citología , Masculino , Ratones
20.
JIMD Rep ; 12: 121-7, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24097415

RESUMEN

We evaluated a family with a 16-month-old boy with cirrhosis and hepatocellular carcinoma and his 30-month-old brother with cirrhosis. After failing to identify a diagnosis after routine metabolic evaluation, we utilized a combination of RNA-Seq and whole exome sequencing to identify a novel homozygous p.Ser171Phe Transaldolase (TALDO1) variant in the proband, his brother with cirrhosis, as well as a clinically asymptomatic older 8-year-old brother. Metabolite analysis and enzymatic testing of TALDO1 demonstrated elevated ribitol, sedoheptitol, and sedoheptulose-7P, and lack of activity of TALDO1 in the three children homozygous for the p.Ser171Phe mutation. Our findings expand the phenotype of transaldolase deficiency to include early onset hepatocellular carcinoma in humans and demonstrate that, even within the same family, individuals with the same homozygous mutation demonstrate a wide range of phenotypes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA