Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nature ; 629(8013): 937-944, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38720067

RESUMEN

QS-21 is a potent vaccine adjuvant and remains the only saponin-based adjuvant that has been clinically approved for use in humans1,2. However, owing to the complex structure of QS-21, its availability is limited. Today, the supply depends on laborious extraction from the Chilean soapbark tree or on low-yielding total chemical synthesis3,4. Here we demonstrate the complete biosynthesis of QS-21 and its precursors, as well as structural derivatives, in engineered yeast strains. The successful biosynthesis in yeast requires fine-tuning of the host's native pathway fluxes, as well as the functional and balanced expression of 38 heterologous enzymes. The required biosynthetic pathway spans seven enzyme families-a terpene synthase, P450s, nucleotide sugar synthases, glycosyltransferases, a coenzyme A ligase, acyl transferases and polyketide synthases-from six organisms, and mimics in yeast the subcellular compartmentalization of plants from the endoplasmic reticulum membrane to the cytosol. Finally, by taking advantage of the promiscuity of certain pathway enzymes, we produced structural analogues of QS-21 using this biosynthetic platform. This microbial production scheme will allow for the future establishment of a structure-activity relationship, and will thus enable the rational design of potent vaccine adjuvants.


Asunto(s)
Adyuvantes Inmunológicos , Ingeniería Metabólica , Saccharomyces cerevisiae , Saponinas , Adyuvantes Inmunológicos/biosíntesis , Adyuvantes Inmunológicos/química , Adyuvantes Inmunológicos/genética , Adyuvantes Inmunológicos/metabolismo , Vías Biosintéticas/genética , Diseño de Fármacos , Enzimas/genética , Enzimas/metabolismo , Ingeniería Metabólica/métodos , Plantas/enzimología , Plantas/genética , Plantas/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saponinas/biosíntesis , Saponinas/química , Saponinas/genética , Saponinas/metabolismo , Relación Estructura-Actividad
2.
ACS Synth Biol ; 13(6): 1589-1599, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38820348

RESUMEN

Glycosylation is a ubiquitous modification present across all of biology, affecting many things such as physicochemical properties, cellular recognition, subcellular localization, and immunogenicity. Nucleotide sugars are important precursors needed to study glycosylation and produce glycosylated products. Saccharomyces cerevisiae is a potentially powerful platform for producing glycosylated biomolecules, but it lacks nucleotide sugar diversity. Nucleotide sugar metabolism is complex, and understanding how to engineer it will be necessary to both access and study heterologous glycosylations found across biology. This review overviews the potential challenges with engineering nucleotide sugar metabolism in yeast from the salvage pathways that convert free sugars to their associated UDP-sugars to de novo synthesis where nucleotide sugars are interconverted through a complex metabolic network with governing feedback mechanisms. Finally, recent examples of engineering complex glycosylation of small molecules in S. cerevisiae are explored and assessed.


Asunto(s)
Ingeniería Metabólica , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Glicosilación , Ingeniería Metabólica/métodos , Productos Biológicos/metabolismo , Nucleótidos/metabolismo , Redes y Vías Metabólicas
3.
ACS Synth Biol ; 13(4): 1215-1224, 2024 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-38467016

RESUMEN

Glycosylation of biomolecules can greatly alter their physicochemical properties, cellular recognition, subcellular localization, and immunogenicity. Glycosylation reactions rely on the stepwise addition of sugars using nucleotide diphosphate (NDP)-sugars. Making these substrates readily available will greatly accelerate the characterization of new glycosylation reactions, elucidation of their underlying regulation mechanisms, and production of glycosylated molecules. In this work, we engineered Saccharomyces cerevisiae to heterologously express nucleotide sugar synthases to access a wide variety of uridine diphosphate (UDP)-sugars from simple starting materials (i.e., glucose and galactose). Specifically, activated glucose, uridine diphosphate d-glucose (UDP-d-Glc), can be converted to UDP-d-glucuronic acid (UDP-d-GlcA), UDP-d-xylose (UDP-d-Xyl), UDP-d-apiose (UDP-d-Api), UDP-d-fucose (UDP-d-Fuc), UDP-l-rhamnose (UDP-l-Rha), UDP-l-arabinopyranose (UDP-l-Arap), and UDP-l-arabinofuranose (UDP-l-Araf) using the corresponding nucleotide sugar synthases of plant and microbial origins. We also expressed genes encoding the salvage pathway to directly activate free sugars to achieve the biosynthesis of UDP-l-Arap and UDP-l-Araf. We observed strong inhibition of UDP-d-Glc 6-dehydrogenase (UGD) by the downstream product UDP-d-Xyl, which we circumvented using an induction system (Tet-On) to delay the production of UDP-d-Xyl to maintain the upstream UDP-sugar pool. Finally, we performed a time-course study using strains containing the biosynthetic pathways to produce five non-native UDP-sugars to elucidate their time-dependent interconversion and the role of UDP-d-Xyl in regulating UDP-sugar metabolism. These engineered yeast strains are a robust platform to (i) functionally characterize sugar synthases in vivo, (ii) biosynthesize a diverse selection of UDP-sugars, (iii) examine the regulation of intracellular UDP-sugar interconversions, and (iv) produce glycosylated secondary metabolites and proteins.


Asunto(s)
Nucleótidos , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Azúcares , Azúcares de Uridina Difosfato/genética , Azúcares de Uridina Difosfato/metabolismo , Xilosa
4.
Nat Commun ; 14(1): 7101, 2023 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-37925486

RESUMEN

Methyl jasmonate (MeJA) is a known elicitor of plant specialized metabolism, including triterpenoid saponins. Saponaria vaccaria is an annual herb used in traditional Chinese medicine, containing large quantities of oleanane-type triterpenoid saponins with anticancer properties and structural similarities to the vaccine adjuvant QS-21. Leveraging the MeJA-elicited saponin biosynthesis, we identify multiple enzymes catalyzing the oxidation and glycosylation of triterpenoids in S. vaccaria. This exploration is aided by Pacbio full-length transcriptome sequencing and gene expression analysis. A cellulose synthase-like enzyme can not only glucuronidate triterpenoid aglycones but also alter the product profile of a cytochrome P450 monooxygenase via preference for the aldehyde intermediate. Furthermore, the discovery of a UDP-glucose 4,6-dehydratase and a UDP-4-keto-6-deoxy-glucose reductase reveals the biosynthetic pathway for the rare nucleotide sugar UDP-D-fucose, a likely sugar donor for fucosylation of plant natural products. Our work enables the production and optimization of high-value saponins in microorganisms and plants through synthetic biology approaches.


Asunto(s)
Saponaria , Saponinas , Triterpenos , Vaccaria , Triterpenos/metabolismo , Transcriptoma , Saponaria/genética , Saponaria/metabolismo , Vaccaria/genética , Plantas/metabolismo , Uridina Difosfato , Glucosa , Azúcares
5.
Nat Chem Biol ; 16(8): 912-919, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32541965

RESUMEN

The design and optimization of biosynthetic pathways for industrially relevant, non-model organisms is challenging due to transformation idiosyncrasies, reduced numbers of validated genetic parts and a lack of high-throughput workflows. Here we describe a platform for in vitro prototyping and rapid optimization of biosynthetic enzymes (iPROBE) to accelerate this process. In iPROBE, cell lysates are enriched with biosynthetic enzymes by cell-free protein synthesis and then metabolic pathways are assembled in a mix-and-match fashion to assess pathway performance. We demonstrate iPROBE by screening 54 different cell-free pathways for 3-hydroxybutyrate production and optimizing a six-step butanol pathway across 205 permutations using data-driven design. Observing a strong correlation (r = 0.79) between cell-free and cellular performance, we then scaled up our highest-performing pathway, which improved in vivo 3-HB production in Clostridium by 20-fold to 14.63 ± 0.48 g l-1. We expect iPROBE to accelerate design-build-test cycles for industrial biotechnology.


Asunto(s)
Vías Biosintéticas/fisiología , Ingeniería Metabólica/métodos , Biología Sintética/métodos , Vías Biosintéticas/efectos de los fármacos , Biotecnología/métodos , Sistema Libre de Células/metabolismo , Redes y Vías Metabólicas/fisiología , Biosíntesis de Proteínas/genética , Biosíntesis de Proteínas/fisiología
6.
Metab Eng ; 45: 86-94, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29155060

RESUMEN

Building biosynthetic pathways and engineering metabolic reactions in cells can be time-consuming due to complexities in cellular metabolism. These complexities often convolute the combinatorial testing of biosynthetic pathway designs needed to define an optimal biosynthetic system. To simplify the optimization of biosynthetic systems, we recently reported a new cell-free framework for pathway construction and testing. In this framework, multiple crude-cell extracts are selectively enriched with individual pathway enzymes, which are then mixed to construct full biosynthetic pathways on the time scale of a day. This rapid approach to building pathways aids in the study of metabolic pathway performance by providing a unique freedom of design to modify and control biological systems for both fundamental and applied biotechnology. The goal of this work was to demonstrate the ability to probe biosynthetic pathway performance in our cell-free framework by perturbing physiochemical conditions, using n-butanol synthesis as a model. We carried out three unique case studies. First, we demonstrated the power of our cell-free approach to maximize biosynthesis yields by mapping physiochemical landscapes using a robotic liquid-handler. This allowed us to determine that NAD and CoA are the most important factors that govern cell-free n-butanol metabolism. Second, we compared metabolic profile differences between two different approaches for building pathways from enriched lysates, heterologous expression and cell-free protein synthesis. We discover that phosphate from PEP utilization, along with other physiochemical reagents, during cell-free protein synthesis-coupled, crude-lysate metabolic system operation inhibits optimal cell-free n-butanol metabolism. Third, we show that non-phosphorylated secondary energy substrates can be used to fuel cell-free protein synthesis and n-butanol biosynthesis. Taken together, our work highlights the ease of using cell-free systems to explore physiochemical perturbations and suggests the need for a more controllable, multi-step, separated cell-free framework for future pathway prototyping and enzyme discovery efforts.


Asunto(s)
Escherichia coli/química , Modelos Químicos , Sistema Libre de Células/química , Sistema Libre de Células/metabolismo , Escherichia coli/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...