Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Med Mycol ; 62(7)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38918050

RESUMEN

The increasing prevalence of Candida parapsilosis as a causative agent of fungal infections underscores the need to comprehensively understand its virulence factors. Secreted aspartic proteases (Saps) play a significant role in adhesion events, promoting biofilm formation, causing tissue damage and evading the host's immune response. In C. parapsilosis, three Saps have been identified: Sapp1, Sapp2 and Sapp3. The present study investigates the production dynamics of Sapp1 and Sapp2 across 10 clinical isolates of C. parapsilosis using various approaches. Each fungal isolate demonstrated the capability to utilize bovine serum albumin (BSA) as the sole nitrogen source, as evidenced by its degradation in a cell-free culture medium, forming low molecular mass polypeptides. Interestingly, the degradation of different proteinaceous substrates, such as BSA, human serum albumin (HSA), gelatin and hemoglobin, was typically isolate-dependent. Notably, higher proteolysis of HSA compared to BSA, gelatin and hemoglobin was observed. A quantitative assay revealed that the cleavage of a peptide fluorogenic substrate (cathepsin D) was isolate-specific, ranging from 44.15 to 270.61 fluorescence arbitrary units (FAU), with a mean proteolysis of 150.7 FAU. The presence of both Sapp1 and Sapp2 antigens on the cell surface of these fungal isolates was confirmed through immunological detection employing specific anti-Sapp1 and anti-Sapp2 antibodies. The surface levels of Sapp1 were consistently higher, up to fourfold, compared to Sapp2. Similarly, higher levels of Sapp1 than Sapp2 were detected in fungal secretions. This study provides insights into the dynamic expression and regulation of Sapps in C. parapsilosis, highlighting a known virulence factor that is considered a potential target for drug development against this increasingly prominent pathogen.


The fungal pathogen Candida parapsilosis can secrete aspartic proteases (Sapps) as part of its arsenal of virulence factors. We demonstrated that Sapps were able to cleave key host proteins, and the production of Sapp1 and Sapp2 antigens was typically dependent on the fungal isolate when grown in both planktonic- and biofilm-forming cells.


Asunto(s)
Proteasas de Ácido Aspártico , Candida parapsilosis , Candida parapsilosis/enzimología , Candida parapsilosis/genética , Humanos , Proteasas de Ácido Aspártico/metabolismo , Proteasas de Ácido Aspártico/genética , Factores de Virulencia/metabolismo , Albúmina Sérica Bovina , Proteolisis , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Candidiasis/microbiología , Medios de Cultivo/química , Catepsina D/metabolismo , Aspartil Proteasas Secretadas
2.
Med Mycol ; 57(8): 1024-1037, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30753649

RESUMEN

Candida parapsilosis sensu stricto (C. parapsilosis) has emerged as the second/third commonest Candida species isolated from hospitals worldwide. Candida spp. possess numerous virulence attributes, including peptidases that play multiple roles in both physiological and pathological events. So, fungal peptidases are valid targets for new drugs development. With this premise in mind, we have evaluated the effect of serine peptidase inhibitors (SPIs) on both cell biology and virulence aspects of C. parapsilosis. First, five different SPIs, phenylmethylsulfonyl fluoride, benzamidine, 4-(2-aminoethyl) benzenesulfonyl fluoride hydrochloride, N-α-tosyl-L-lysine chloromethyl ketone hydrochloride, and N-tosyl-L-phenylalanine chloromethyl ketone (TPCK) were tested, and TPCK showed the best efficacy to arrest fungal growth. Subsequently, the ability of TPCK to modulate physiopathological processes was investigated. Overall, TPCK was able to (i) inhibit the cell-associated serine peptidase activities, (ii) promote morphometric and ultrastructural alterations, (iii) induce an increase in the intracellular oxidation level, which culminates in a vigorous lipid peroxidation and accumulation of neutral lipids in cytoplasmic inclusions, (iv) modulate the expression/exposition of surface structures, such as mannose/glucose-rich glycoconjugates, N-acetylglucosamine-containing molecules, chitin, polypeptides and surface aspartic peptidases, (v) reduce the adhesion to either polystyrene or glass surfaces as well as to partially disarticulate the mature biofilm, (vi) block the fungal interaction with macrophages, and (vii) protect Galleria mellonella from fungal infection, enhancing larvae survivability. Altogether, these results demonstrated that TPCK induced several changes over fungal biology besides the interference with aspects associated to C. parapsilosis virulence and pathogenesis, which indicates that SPIs could be novel promising therapeutic agents in dealing with candidiasis.


Asunto(s)
Antifúngicos/farmacología , Candida parapsilosis/efectos de los fármacos , Candidiasis/prevención & control , Inhibidores de Serina Proteinasa/farmacología , Clorometilcetona de Tosilfenilalanila/farmacología , Animales , Antifúngicos/administración & dosificación , Candida parapsilosis/citología , Candida parapsilosis/crecimiento & desarrollo , Adhesión Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Larva/microbiología , Lepidópteros/microbiología , Estrés Oxidativo , Inhibidores de Serina Proteinasa/administración & dosificación , Análisis de Supervivencia , Clorometilcetona de Tosilfenilalanila/administración & dosificación , Resultado del Tratamiento , Virulencia/efectos de los fármacos
3.
FEMS Yeast Res ; 13(8): 831-48, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24103069

RESUMEN

The production of virulence attributes in three reference strains and 11 clinical isolates primarily identified as Candida parapsilosis was evaluated. Morphological and phenotypical tests were not able to discriminate among the three species of the C. parapsilosis complex; consequently, molecular methods were applied to solve this task. After employing polymerase chain reaction-based methods, nine clinical strains were identified as C. parapsilosis sensu stricto and two as C. orthopsilosis. Protease, catalase, and hemolysin were produced by all 14 strains, while 92.9% and 78.6% of strains secreted, respectively, esterase and phytase. No phospholipase producers were detected. Mannose/glucose, N-acetylglucosamine, and sialic acid residues were detected at the surface of all strains, respectively, in high, medium, and low levels. All strains presented elevated surface hydrophobicity and similar ability to form biofilm. However, the adhesion to inert substrates and mammalian cells was extremely diverse, showing typical intrastrain variations. Overall, the strains showed (1) predilection to adhere to plastic over glass and the number of pseudohyphae was more prominent than yeasts and (2) the interaction process was slightly enhanced in macrophages than fibroblasts, with the majority of fungal cells detected inside them. Positive/negative correlations were demonstrated among the production of these virulence traits in C. parapsilosis complex.


Asunto(s)
Candida/clasificación , Fenotipo , Biopelículas , Candida/fisiología , Candida/ultraestructura , Membrana Celular/química , Membrana Celular/metabolismo , Glicosilación , Humanos , Hidrólisis , Interacciones Hidrofóbicas e Hidrofílicas , Tipificación Molecular , Filogenia , ARN de Hongos , ARN Ribosómico 28S , Virulencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...