Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
mBio ; 15(5): e0057024, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38587425

RESUMEN

Fungal resistance to commonly used medicines is a growing public health threat, and there is a dire need to develop new classes of antifungals. We previously described a peptide produced by Enterococcus faecalis, EntV, that restricts Candida albicans to a benign form rather than having direct fungicidal activity. Moreover, we showed that one 12-amino acid (aa) alpha helix of this peptide retained full activity, with partial activity down to the 10aa alpha helix. Using these peptides as a starting point, the current investigation sought to identify the critical features necessary for antifungal activity and to screen for new variants with enhanced activity using both biofilm and C. elegans infection assays. First, the short peptides were screened for residues with critical activity by generating alanine substitutions. Based on this information, we used synthetic molecular evolution (SME) to rationally vary the specific residues of the 10aa variant in combination to generate a library that was screened to identify variants with more potent antifungal activity than the parent template. Five gain-of-function peptides were identified. Additionally, chemical modifications to the peptides to increase stability, including substitutions of D-amino acids and hydrocarbon stapling, were investigated. The most promising peptides were additionally tested in mouse models of oropharyngeal and systemic candidiasis where their efficacy in preventing infection was demonstrated. The expectation is that these discoveries will contribute to the development of new therapeutics in the fight against antimicrobial resistant fungi. IMPORTANCE: Since the early 1980s, the incidence of disseminated life-threatening fungal infections has been on the rise. Worldwide, Candida and Cryptococcus species are among the most common agents causing these infections. Simultaneously, with this rise of clinical incidence, there has also been an increased prevalence of antifungal resistance, making treatment of these infections very difficult. For example, there are now strains of Candida auris that are resistant to all three classes of currently used antifungal drugs. In this study, we report on a strategy that allows for the development of novel antifungal agents by using synthetic molecular evolution. These discoveries demonstrate that the enhancement of antifungal activity from naturally occurring peptides is possible and can result in clinically relevant agents that have efficacy in multiple in vivo models as well as the potential for broad-spectrum activity.


Asunto(s)
Antifúngicos , Biopelículas , Caenorhabditis elegans , Candida albicans , Candidiasis , Enterococcus faecalis , Pruebas de Sensibilidad Microbiana , Antifúngicos/farmacología , Antifúngicos/química , Animales , Ratones , Candida albicans/efectos de los fármacos , Candida albicans/genética , Biopelículas/efectos de los fármacos , Candidiasis/tratamiento farmacológico , Candidiasis/microbiología , Enterococcus faecalis/efectos de los fármacos , Enterococcus faecalis/genética , Caenorhabditis elegans/efectos de los fármacos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/farmacología , Modelos Animales de Enfermedad , Péptidos/farmacología , Péptidos/genética , Péptidos/química
2.
PLoS Pathog ; 19(9): e1011692, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37769015

RESUMEN

The signals that denote mammalian host environments and dictate the activation of signaling pathways in human-associated microorganisms are often unknown. The transcription regulator Rtg1/3 in the human fungal pathogen Candida albicans is a crucial determinant of host colonization and pathogenicity. Rtg1/3's activity is controlled, in part, by shuttling the regulator between the cytoplasm and nucleus of the fungus. The host signal(s) that Rtg1/3 respond(s) to, however, have remained unclear. Here we report that neutrophil-derived reactive oxygen species (ROS) direct the subcellular localization of this C. albicans transcription regulator. Upon engulfment of Candida cells by human or mouse neutrophils, the regulator shuttles to the fungal nucleus. Using genetic and chemical approaches to disrupt the neutrophils' oxidative burst, we establish that the oxidants produced by the NOX2 complex-but not the oxidants generated by myeloperoxidase-trigger Rtg1/3's migration to the nucleus. Furthermore, screening a collection of C. albicans kinase deletion mutants, we implicate the MKC1 signaling pathway in the ROS-dependent regulation of Rtg1/3 in this fungus. Finally, we show that Rtg1/3 contributes to C. albicans virulence in the nematode Caenorhabditis elegans in an ROS-dependent manner as the rtg1 and rtg3 mutants display virulence defects in wild-type but not in ROS deficient worms. Our findings establish NOX2-derived ROS as a key signal that directs the activity of the pleiotropic fungal regulator Rtg1/3.


Asunto(s)
Candida albicans , Neutrófilos , Animales , Ratones , Humanos , Especies Reactivas de Oxígeno/metabolismo , Neutrófilos/metabolismo , Candida , Oxidantes/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Mamíferos
3.
Nat Commun ; 13(1): 6047, 2022 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-36229448

RESUMEN

Fungal pathogens are a continuing challenge due to few effective antifungals and a rise in resistance. In previous work, we described the inhibition of Candida albicans virulence following exposure to the 68 amino acid bacteriocin, EntV, secreted by Enterococcus faecalis. Here, to optimize EntV as a potential therapeutic and better understand its antifungal features, an X-ray structure is obtained. The structure consists of six alpha helices enclosing a seventh 16 amino acid helix (α7). The individual helices are tested for antifungal activity using in vitro and nematode infection assays. Interestingly, α7 retains antifungal, but not antibacterial activity and is also effective against Candida auris and Cryptococcus neoformans. Further reduction of α7 to 12 amino acids retains full antifungal activity, and excellent efficacy is observed in rodent models of C. albicans oropharyngeal, systemic, and venous catheter infections. Together, these results showcase EntV-derived peptides as promising candidates for antifungal therapeutic development.


Asunto(s)
Bacteriocinas , Cryptococcus neoformans , Micosis , Aminoácidos/farmacología , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Bacteriocinas/metabolismo , Candida albicans , Humanos , Pruebas de Sensibilidad Microbiana , Micosis/tratamiento farmacológico
4.
G3 (Bethesda) ; 11(2)2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33609366

RESUMEN

The nematode Caenorhabditis elegans is commonly used as a model organism in studies of the host immune response. The worm encodes twelve peroxidase-cyclooxygenase superfamily members, making it an attractive model in which to study the functions of heme peroxidases. In previous work, loss of one of these peroxidases, SKPO-1 (ShkT-containing peroxidase), rendered C. elegans more sensitive to the human, Gram-positive pathogen Enterococcus faecalis. SKPO-1 was localized to the hypodermis of the animals where it also affected cuticle development as indicated by a morphological phenotype called "dumpy." In this work, a better understanding of how loss of skpo-1 impacts both sensitivity to pathogen as well as cuticle development was sought by subjecting a deletion mutant of skpo-1 to transcriptome analysis using RNA sequencing following exposure to control (Escherichia coli) and pathogenic (E. faecalis) feeding conditions. Loss of skpo-1 caused a general upregulation of genes encoding collagens and other proteins related to cuticle development. On E. faecalis, these animals also failed to upregulate guanylyl cyclases that are often involved in environmental sensing. Hoechst straining revealed increased permeability of the cuticle and atomic force microscopy exposed the misalignment of the cuticular annuli and furrows. These findings provide a basis for better understanding of the morphological as well as the pathogen sensitivity phenotypes associated with loss of SKPO-1 function.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Enterococcus faecalis/patogenicidad , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Perfilación de la Expresión Génica , Hemo , Peroxidasa
5.
J Infect Dis ; 223(3): 508-516, 2021 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-32597945

RESUMEN

Enterococcus  faecalis is a significant cause of hospital-acquired bacteremia. Herein, the discovery is reported that cardiac microlesions form during severe bacteremic E. faecalis infection in mice. The cardiac microlesions were identical in appearance to those formed by Streptococcus pneumoniae during invasive pneumococcal disease. However, E. faecalis does not encode the virulence determinants implicated in pneumococcal microlesion formation. Rather, disulfide bond forming protein A (DsbA) was found to be required for E. faecalis virulence in a Caenorhabditis elegans model and was necessary for efficient cardiac microlesion formation. Furthermore, E. faecalis promoted cardiomyocyte apoptotic and necroptotic cell death at sites of microlesion formation. Additionally, loss of DsbA caused an increase in proinflammatory cytokines, unlike the wild-type strain, which suppressed the immune response. In conclusion, we establish that E. faecalis is capable of forming cardiac microlesions and identify features of both the bacterium and the host response that are mechanistically involved.


Asunto(s)
Bacteriemia/microbiología , Bacteriemia/patología , Enterococcus faecalis/patogenicidad , Cardiopatías/microbiología , Cardiopatías/patología , Corazón , Animales , Apoptosis , Proteínas Bacterianas/metabolismo , Caenorhabditis elegans/microbiología , Muerte Celular , Citocinas , Modelos Animales de Enfermedad , Infecciones por Bacterias Grampositivas/microbiología , Infecciones por Bacterias Grampositivas/patología , Ratones , Necroptosis , Infecciones Neumocócicas/microbiología , Streptococcus pneumoniae/patogenicidad , Tiorredoxinas , Virulencia , Factores de Virulencia
6.
Proc Natl Acad Sci U S A ; 116(52): 26925-26932, 2019 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-31818937

RESUMEN

Bacteria have developed several evolutionary strategies to protect their cell membranes (CMs) from the attack of antibiotics and antimicrobial peptides (AMPs) produced by the innate immune system, including remodeling of phospholipid content and localization. Multidrug-resistant Enterococcus faecalis, an opportunistic human pathogen, evolves resistance to the lipopeptide daptomycin and AMPs by diverting the antibiotic away from critical septal targets using CM anionic phospholipid redistribution. The LiaFSR stress response system regulates this CM remodeling via the LiaR response regulator by a previously unknown mechanism. Here, we characterize a LiaR-regulated protein, LiaX, that senses daptomycin or AMPs and triggers protective CM remodeling. LiaX is surface exposed, and in daptomycin-resistant clinical strains, both LiaX and the N-terminal domain alone are released into the extracellular milieu. The N-terminal domain of LiaX binds daptomycin and AMPs (such as human LL-37) and functions as an extracellular sentinel that activates the cell envelope stress response. The C-terminal domain of LiaX plays a role in inhibiting the LiaFSR system, and when this domain is absent, it leads to activation of anionic phospholipid redistribution. Strains that exhibit LiaX-mediated CM remodeling and AMP resistance show enhanced virulence in the Caenorhabditis elegans model, an effect that is abolished in animals lacking an innate immune pathway crucial for producing AMPs. In conclusion, we report a mechanism of antibiotic and AMP resistance that couples bacterial stress sensing to major changes in CM architecture, ultimately also affecting host-pathogen interactions.

7.
mBio ; 10(4)2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31266876

RESUMEN

Enterococcus faecalis, a Gram-positive bacterium, and Candida albicans, a polymorphic fungus, are common constituents of the microbiome as well as increasingly problematic causes of infections. Interestingly, we previously showed that these two species antagonize each other's virulence and that E. faecalis inhibition of C. albicans was specifically mediated by EntV. EntV is a bacteriocin encoded by the entV (ef1097) locus that reduces C. albicans virulence and biofilm formation by inhibiting hyphal morphogenesis. In this report, we studied the posttranslational modifications necessary for EntV antifungal activity. First, we show that the E. faecalis secreted enzyme gelatinase (GelE) is responsible for cleaving EntV into its 68-amino-acid, active form and that this process does not require the serine protease SprE. Furthermore, we demonstrate that a disulfide bond that forms within EntV is necessary for antifungal activity. Abrogating this bond by chemical treatment or genetic modification rendered EntV inactive against C. albicans Moreover, we identified the likely catalyst of this disulfide bond, a previously uncharacterized thioredoxin within the E. faecalis genome called DsbA. Loss of DsbA, or disruption of its redox-active cysteines, resulted in loss of EntV antifungal activity. Finally, we show that disulfide bond formation is not a prerequisite for cleavage; EntV cleavage proceeded normally in the absence of DsbA. In conclusion, we present a model in which following secretion, EntV undergoes disulfide bond formation by DsbA and cleavage by GelE in order to generate a peptide capable of inhibiting C. albicansIMPORTANCEEnterococcus faecalis and Candida albicans are among the most important and problematic pathobionts, organisms that normally are harmless commensals but can cause dangerous infections in immunocompromised hosts. In fact, both organisms are listed by the Centers for Disease Control and Prevention as serious global public health threats stemming from the increased prevalence of antimicrobial resistance. The rise in antifungal resistance is of particular concern considering the small arsenal of currently available therapeutics. EntV is a peptide with antifungal properties, and it, or a similar compound, could be developed into a therapeutic alternative, either alone or in combination with existing agents. However, to do so requires understanding what properties of EntV are necessary for its antifungal activity. In this work, we studied the posttranslational processing of EntV and what modifications are necessary for inhibition of C. albicans in order to fill this gap in knowledge.


Asunto(s)
Antifúngicos/metabolismo , Antifúngicos/farmacología , Bacteriocinas/metabolismo , Bacteriocinas/farmacología , Candida albicans/efectos de los fármacos , Enterococcus faecalis/metabolismo , Procesamiento Proteico-Postraduccional , Candida albicans/crecimiento & desarrollo , Disulfuros/metabolismo , Gelatinasas/metabolismo , Hifa/efectos de los fármacos , Hifa/crecimiento & desarrollo , Proteolisis
8.
J Infect Dis ; 220(3): 494-504, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-30938438

RESUMEN

Daptomycin resistance in enterococci is often mediated by the LiaFSR system, which orchestrates the cell membrane stress response. Activation of LiaFSR through the response regulator LiaR generates major changes in cell membrane function and architecture (membrane adaptive response), permitting the organism to survive the antibiotic attack. Here, using a laboratory strain of Enterococcus faecalis, we developed a novel Caenorhabditis elegans model of daptomycin therapy and showed that disrupting LiaR-mediated cell membrane adaptation restores the in vivo activity of daptomycin. The LiaR effect was also seen in a clinical strain of daptomycin-resistant Enterococcus faecium, using a murine model of peritonitis. Furthermore, alteration of the cell membrane response increased the ability of human polymorphonuclear neutrophils to readily clear both E. faecalis and multidrug-resistant E. faecium. Our results provide proof of concept that targeting the cell membrane adaptive response restores the in vivo activity of antibiotics, prevents resistance, and enhances the ability of the innate immune system to kill infecting bacteria.


Asunto(s)
Antibacterianos/farmacología , Membrana Celular/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Enterococcus faecalis/efectos de los fármacos , Enterococcus faecium/efectos de los fármacos , Infecciones por Bacterias Grampositivas/tratamiento farmacológico , Neutrófilos/efectos de los fármacos , Animales , Proteínas Bacterianas , Membrana Celular/microbiología , Infecciones por Bacterias Grampositivas/microbiología , Humanos , Ratones , Pruebas de Sensibilidad Microbiana/métodos , Neutrófilos/microbiología
9.
J Bacteriol ; 201(10)2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30833356

RESUMEN

Ethanolamine (EA) is a compound prevalent in the gastrointestinal (GI) tract that can be used as a carbon, nitrogen, and/or energy source. Enterococcus faecalis, a GI commensal and opportunistic pathogen, contains approximately 20 ethanolamine utilization (eut) genes encoding the necessary regulatory, enzymatic, and structural proteins for this process. Here, using a chemically defined medium, two regulatory factors that affect EA utilization were examined. First, the functional consequences of loss of the small RNA (sRNA) EutX on the efficacy of EA utilization were investigated. One effect observed, as loss of this negative regulator causes an increase in eut gene expression, was a concomitant increase in the number of catabolic bacterial microcompartments (BMCs) formed. However, despite this increase, the growth of the strain was repressed, suggesting that the overall efficacy of EA utilization was negatively affected. Second, utilizing a deletion mutant and a complement, carbon catabolite control protein A (CcpA) was shown to be responsible for the repression of EA utilization in the presence of glucose. A predicted cre site in one of the three EA-inducible promoters, PeutS, was identified as the target of CcpA. However, CcpA was shown to affect the activation of all the promoters indirectly through the two-component system EutV and EutW, whose genes are under the control of the PeutS promoter. Moreover, a bioinformatics analysis of bacteria predicted to contain CcpA and cre sites revealed that a preponderance of BMC-containing operons are likely regulated by carbon catabolite repression (CCR).IMPORTANCE Ethanolamine (EA) is a compound commonly found in the gastrointestinal (GI) tract that can affect the behavior of human pathogens that can sense and utilize it, such as Enterococcus faecalis and Salmonella Therefore, it is important to understand how the genes that govern EA utilization are regulated. In this work, we investigated two regulatory factors that control this process. One factor, a small RNA (sRNA), is shown to be important for generating the right levels of gene expression for maximum efficiency. The second factor, a transcriptional repressor, is important for preventing expression when other preferred sources of energy are available. Furthermore, a global bioinformatics analysis revealed that this second mechanism of transcriptional regulation likely operates on similar genes in related bacteria.


Asunto(s)
Represión Catabólica , Enterococcus faecalis/metabolismo , Etanolamina/metabolismo , Regulación Bacteriana de la Expresión Génica , Medios de Cultivo/química , Enterococcus faecalis/genética , Enterococcus faecalis/crecimiento & desarrollo , Eliminación de Gen , Genes Reguladores , Prueba de Complementación Genética
10.
Bio Protoc ; 9(21)2019 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-32699812

RESUMEN

Reagents such as Amplex® Red have been developed for detecting hydrogen peroxide (H2O2) and are used to measure the release of H2O2 from biological samples such as mammalian leukocytes undergoing the oxidative burst. Caenorhabditis elegans is commonly used as a model host in the study of interactions with microbial pathogens and releases reactive oxygen species (ROS) as a component of its defense response. We adapted the Amplex® Red Hydrogen Peroxide/Peroxidase Assay Kit to measure H2O2 output from live Caenorhabditis elegans exposed to microbial pathogens. The assay differs from other forms of ROS detection in the worm, like dihydrofluorescein dyes and genetically encoded probes such as HyPer, in that it generally detects released, extracellular ROS rather than intracellular ROS, though the distinction between the two is blurred by the fact that certain species of ROS, including H2O2, can cross membranes. The protocol involves feeding C. elegans on a lawn of the pathogen of interest for a period of time. The animals are then rinsed off the plates in buffer and washed to remove any microbes on their cuticle. Finally, the animals in buffer are distributed into 96-well plates and Amplex® Red and horseradish peroxidase (HRP) are added. Any H2O2 released into the buffer by the worms will react with the Amplex® Red reagent in a 1:1 ratio in the presence of HRP to produce the red fluorescent excitation product resorufin that can be measured fluorometrically or spectrophotometrically, and the amount of H2O2 released can be calculated by comparison to a standard curve. The assay is most appropriate for studies focused on released ROS, and its advantages include ease of use, the ability to use small numbers of animals in a plate reader assay in which measurements can be taken either fluorometrically or spectrophotometrically.

11.
mBio ; 9(3)2018 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-29739905

RESUMEN

Enterococcus faecalis is paradoxically a dangerous nosocomial pathogen and a normal constituent of the human gut microbiome, an environment rich in ethanolamine. E. faecalis carries the eut (ethanolamine utilization) genes, which enable the catabolism of ethanolamine (EA) as a valuable source of carbon and/or nitrogen. EA catabolism was previously shown to contribute to the colonization and growth of enteric pathogens, such as Salmonella enterica serovar Typhimurium and enterohemorrhagic Escherichia coli (EHEC), in the gut environment. We tested the ability of eut mutants of E. faecalis to colonize the gut using a murine model of gastrointestinal (GI) tract competition and report the surprising observation that these mutants outcompete the wild-type strain.IMPORTANCE Some bacteria that are normal, harmless colonizers of the human body can cause disease in immunocompromised patients, particularly those that have been heavily treated with antibiotics. Therefore, it is important to understand the factors that promote or negate these organisms' ability to colonize. Previously, ethanolamine, found in high concentrations in the GI tract, was shown to promote the colonization and growth of bacteria associated with food poisoning. Here, we report the surprising, opposite effect of ethanolamine utilization on the commensal colonizer E. faecalis, namely, that loss of this metabolic capacity made it a better colonizer.


Asunto(s)
Enterococcus faecalis/crecimiento & desarrollo , Enterococcus faecalis/metabolismo , Etanolaminas/metabolismo , Tracto Gastrointestinal/microbiología , Infecciones por Bacterias Grampositivas/microbiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Enterococcus faecalis/genética , Microbioma Gastrointestinal , Tracto Gastrointestinal/metabolismo , Regulación Bacteriana de la Expresión Génica , Infecciones por Bacterias Grampositivas/metabolismo , Humanos , Polipéptido Pancreático
12.
Proc Natl Acad Sci U S A ; 114(17): 4507-4512, 2017 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-28396417

RESUMEN

Enterococcus faecalis, a Gram-positive bacterium, and Candida albicans, a fungus, occupy overlapping niches as ubiquitous constituents of the gastrointestinal and oral microbiome. Both species also are among the most important and problematic, opportunistic nosocomial pathogens. Surprisingly, these two species antagonize each other's virulence in both nematode infection and in vitro biofilm models. We report here the identification of the E. faecalis bacteriocin, EntV, produced from the entV (ef1097) locus, as both necessary and sufficient for the reduction of C. albicans virulence and biofilm formation through the inhibition of hyphal formation, a critical virulence trait. A synthetic version of the mature 68-aa peptide potently blocks biofilm development on solid substrates in multiple media conditions and disrupts preformed biofilms, which are resistant to current antifungal agents. EntV68 is protective in three fungal infection models at nanomolar or lower concentrations. First, nematodes treated with the peptide at 0.1 nM are completely resistant to killing by C. albicans The peptide also protects macrophages and augments their antifungal activity. Finally, EntV68 reduces epithelial invasion, inflammation, and fungal burden in a murine model of oropharyngeal candidiasis. In all three models, the peptide greatly reduces the number of fungal cells present in the hyphal form. Despite these profound effects, EntV68 has no effect on C. albicans viability, even in the presence of significant host-mimicking stresses. These findings demonstrate that EntV has potential as an antifungal agent that targets virulence rather than viability.


Asunto(s)
Bacteriocinas/metabolismo , Bacteriocinas/farmacología , Biopelículas/crecimiento & desarrollo , Candida albicans/efectos de los fármacos , Enterococcus faecalis/metabolismo , Hifa/efectos de los fármacos , Animales , Caenorhabditis elegans/microbiología , Candida albicans/patogenicidad , Candidiasis/microbiología , Candidiasis/prevención & control , Enterococcus faecalis/genética , Macrófagos/microbiología , Ratones , Ratones Endogámicos BALB C , Orofaringe/microbiología , Células RAW 264.7 , Virulencia
13.
Physiol Rep ; 4(6)2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27033447

RESUMEN

NSAIDuse is limited due to the drugs' toxicity to the gastrointestinal mucosa, an action incompletely understood. Lower gut injury induced byNSAIDs is dependent on bile secretion and is reported to increase the growth of a number of bacterial species, including an enterococcal species,Enterococcus faecalis This study examined the relationships between indomethacin (INDO)-induced intestinal injury/bleeding, small bowel overgrowth (SBO) and dissemination of enterococci, and the contribution of bile secretion to these pathological responses. Rats received either a sham operation (SO) or bile duct ligation (BDL) prior to administration of two daily subcutaneous doses of saline orINDO, and 24 h later, biopsies of ileum and liver were collected for plating on selective bacterial media. Fecal hemoglobin (Hb) and blood hematocrit (Hct) were measured to assess intestinal bleeding. Of the four treatment groups, onlySO/INDOrats experienced a significant 10- to 30-fold increase in fecal Hb and reduction in Hct, indicating thatBDLattenuatedINDO-induced intestinal injury/bleeding. Ileal enterococcal colony-forming units were significantly increased (500- to 1000-fold) inSO/INDOrats. Of all groups, only theSO/INDOrats demonstrated gut injury, and this was associated with enterococcal overgrowth of the gut and dissemination to the liver. We also demonstrated thatINDO-induced intestinal injury andE. faecalisovergrowth was independent of the route of administration of the drug, as similar findings were observed in rats orally dosed with theNSAID Bile secretion plays an important role inINDO-induced gut injury and appears to support enterococcal overgrowth of the intestine.NSAID-induced enterococcalSBOmay be involved either as a compensatory response to gut injury or with the pathogenic process itself and the subsequent development of sepsis.


Asunto(s)
Antiinflamatorios no Esteroideos , Conductos Biliares/metabolismo , Bilis/metabolismo , Enterococcus faecalis/crecimiento & desarrollo , Hemorragia Gastrointestinal/microbiología , Enfermedades del Íleon/microbiología , Íleon/microbiología , Indometacina , Animales , Traslocación Bacteriana , Conductos Biliares/cirugía , Modelos Animales de Enfermedad , Enterococcus faecalis/metabolismo , Heces/química , Hemorragia Gastrointestinal/inducido químicamente , Hemorragia Gastrointestinal/metabolismo , Hemorragia Gastrointestinal/patología , Hemoglobinas/metabolismo , Enfermedades del Íleon/inducido químicamente , Enfermedades del Íleon/metabolismo , Enfermedades del Íleon/patología , Íleon/metabolismo , Íleon/patología , Ligadura , Hígado/microbiología , Masculino , Ratas Sprague-Dawley
14.
PLoS One ; 10(4): e0124091, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25909649

RESUMEN

Dual oxidases (DUOX) are enzymes that contain an NADPH oxidase domain that produces hydrogen peroxide (H2O2) and a peroxidase domain that can utilize H2O2 to carry out a variety of reactions. The model organism Caenorhabditis elegans produces the DUOX, BLI-3, which has roles in both cuticle development and in protection against infection. In previous work, we demonstrated that while certain peroxidases were protective against the human bacterial pathogen Enterococcus faecalis, the peroxidase domain of BLI-3 was not, leading to the postulate that the NADPH oxidase domain is the basis for BLI-3's protective effects. In this work, we show that a strain carrying a mutation in the NADPH oxidase domain of BLI-3, bli-3(im10), is more susceptible to E. faecalis and the human fungal pathogen Candida albicans. Additionally, less H2O2 is produced in response to pathogen using both an established Amplex Red assay and a strain of C. albicans, WT-OXYellow, which acts as a biosensor of reactive oxygen species (ROS). Finally, a C. elegans line containing a BLI-3::mCherry transgene was generated. Previous work suggested that BLI-3 is produced in the hypodermis and the intestine. Expression of the transgene was observed in both these tissues, and additionally in the pharynx. The amount and pattern of localization of BLI-3 did not change in response to pathogen exposure.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , NADPH Oxidasas/metabolismo , Oxidorreductasas/metabolismo , Dominios y Motivos de Interacción de Proteínas , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/microbiología , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Susceptibilidad a Enfermedades , Peróxido de Hidrógeno/metabolismo , Mutación , Oxidorreductasas/química , Oxidorreductasas/genética , Transporte de Proteínas
15.
J Infect Dis ; 211(8): 1317-25, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25362197

RESUMEN

Daptomycin is a lipopeptide antibiotic that is used clinically against many gram-positive bacterial pathogens and is considered a key frontline bactericidal antibiotic to treat multidrug-resistant enterococci. Emergence of daptomycin resistance during therapy of serious enterococcal infections is a major clinical issue. In this work, we show that deletion of the gene encoding the response regulator, LiaR (a member of the LiaFSR system that controls cell envelope homeostasis), from daptomycin-resistant Enterococcus faecalis not only reversed resistance to 2 clinically available cell membrane-targeting antimicrobials (daptomycin and telavancin), but also resulted in hypersusceptibility to these antibiotics and to a variety of antimicrobial peptides of diverse origin and with different mechanisms of action. The changes in susceptibility to these antibiotics and antimicrobial peptides correlated with in vivo attenuation in a Caenorhabditis elegans model. Mechanistically, deletion of liaR altered the localization of cardiolipin microdomains in the cell membrane. Our findings suggest that LiaR is a master regulator of the enterococcal cell membrane response to diverse antimicrobial agents and peptides; as such, LiaR represents a novel target to restore the activity of clinically useful antimicrobials against these organisms and, potentially, increase susceptibility to endogenous antimicrobial peptides.


Asunto(s)
Antiinfecciosos/farmacología , Proteínas Bacterianas/genética , Daptomicina/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Enterococcus faecalis/efectos de los fármacos , Enterococcus faecalis/genética , Péptidos/farmacología , Animales , Antibacterianos/farmacología , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/microbiología , Cardiolipinas/metabolismo , Membrana Celular/metabolismo , Membrana Celular/microbiología , Infecciones por Bacterias Grampositivas/tratamiento farmacológico , Infecciones por Bacterias Grampositivas/metabolismo , Infecciones por Bacterias Grampositivas/microbiología , Pruebas de Sensibilidad Microbiana/métodos , Eliminación de Secuencia/genética
16.
Mol Microbiol ; 95(4): 660-77, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25431047

RESUMEN

Enterococcus faecalis pCF10 transfers at high frequencies upon pheromone induction of the prgQ transfer operon. This operon codes for three cell wall-anchored proteins - PrgA, PrgB (aggregation substance) and PrgC - and a type IV secretion system through which the plasmid is delivered to recipient cells. Here, we defined the contributions of the Prg surface proteins to plasmid transfer, biofilm formation and virulence using the Caenorhabditis elegans infection model. We report that a combination of PrgB and extracellular DNA (eDNA), but not PrgA or PrgC, was required for extensive cellular aggregation and pCF10 transfer at wild-type frequencies. In addition to PrgB and eDNA, production of PrgA was necessary for extensive binding of enterococci to abiotic surfaces and development of robust biofilms. However, although PrgB is a known virulence factor in mammalian infection models, we determined that PrgA and PrgC, but not PrgB, were required for efficient killing in the worm infection model. We propose that the pheromone-responsive, conjugative plasmids of E. faecalis have retained Prg-like surface functions over evolutionary time for attachment, colonization and robust biofilm development. In natural settings, these biofilms are polymicrobial in composition and constitute optimal environments for signal exchange, mating pair formation and widespread lateral gene transfer.


Asunto(s)
Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Caenorhabditis elegans/microbiología , Enterococcus faecalis/genética , Enterococcus faecalis/patogenicidad , Proteínas de la Membrana/metabolismo , Plásmidos , Animales , Proteínas Bacterianas/genética , Conjugación Genética , Enterococcus faecalis/fisiología , Regulación Bacteriana de la Expresión Génica , Proteínas de la Membrana/genética , Regiones Promotoras Genéticas , Eliminación de Secuencia , Transcripción Genética , Virulencia/genética , Factores de Virulencia/metabolismo
17.
Science ; 345(6199): 937-40, 2014 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-25146291

RESUMEN

The ethanolamine utilization (eut) locus of Enterococcus faecalis, containing at least 19 genes distributed over four polycistronic messenger RNAs, appears to be regulated by a single adenosyl cobalamine (AdoCbl)-responsive riboswitch. We report that the AdoCbl-binding riboswitch is part of a small, trans-acting RNA, EutX, which additionally contains a dual-hairpin substrate for the RNA binding-response regulator, EutV. In the absence of AdoCbl, EutX uses this structure to sequester EutV. EutV is known to regulate the eut messenger RNAs by binding dual-hairpin structures that overlap terminators and thus prevent transcription termination. In the presence of AdoCbl, EutV cannot bind to EutX and, instead, causes transcriptional read through of multiple eut genes. This work introduces riboswitch-mediated control of protein sequestration as a posttranscriptional mechanism to coordinately regulate gene expression.


Asunto(s)
Cobamidas/metabolismo , Enterococcus faecalis/genética , Etanolamina/metabolismo , Regulación Bacteriana de la Expresión Génica , ARN Mensajero/metabolismo , Elementos de Respuesta , Riboswitch/fisiología , Transcripción Genética , Secuencia de Bases , Enterococcus faecalis/metabolismo , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , ARN Mensajero/química , ARN Mensajero/genética , Riboswitch/genética
18.
J Bacteriol ; 195(20): 4761-8, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23974022

RESUMEN

The Enterococcus faecalis cell wall-anchored protein Ace is an important virulence factor involved in cell adhesion and infection. Expression of Ace on the cell surface is affected by many factors, including stage of growth, culture temperature, and environmental components, such as serum, urine, and collagen. However, the mechanisms that regulate or modulate Ace display are not well understood. With interest in identifying genes associated with Ace expression, we utilized a whole-cell enzyme-linked immunosorbent assay (ELISA)-based screening method to identify mutants from a transposon insertion mutant library which exhibited distinct Ace surface expression profiles. We identified a ccpA insertion mutant which showed significantly decreased levels of Ace surface expression at early growth phase versus those of wild-type OG1RF. Confirmation of the observation was achieved through flow cytometry and complementation analysis. Compared to the wild type, the E. faecalis ccpA mutant had an impaired ability to adhere to collagen when grown to early exponential phase, consistent with the lack of Ace expression in the early growth phase. As a key component of carbon catabolite regulation, CcpA has been previously reported to play a critical role in regulating expression of proteins involved in E. faecalis carbohydrate uptake and utilization. Our discovery is the first to associate CcpA with the production of a major E. faecalis virulence factor, providing new insights into the regulation of E. faecalis pathogenesis.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Enterococcus faecalis/metabolismo , Enterococcus faecalis/patogenicidad , Regulación Bacteriana de la Expresión Génica/fisiología , Adhesión Bacteriana/fisiología , Proteínas Bacterianas/genética , Proteínas Portadoras/genética , Enterococcus faecalis/genética , Biblioteca de Genes , Prueba de Complementación Genética , Mutación , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Virulencia
19.
Infect Immun ; 81(1): 189-200, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23115035

RESUMEN

The Gram-positive bacterium Enterococcus faecalis and the fungus Candida albicans are both found as commensals in many of the same niches of the human body, such as the oral cavity and gastrointestinal (GI) tract. However, both are opportunistic pathogens and have frequently been found to be coconstituents of polymicrobial infections. Despite these features in common, there has been little investigation into whether these microbes affect one another in a biologically significant manner. Using a Caenorhabditis elegans model of polymicrobial infection, we discovered that E. faecalis and C. albicans negatively impact each other's virulence. Much of the negative effect of E. faecalis on C. albicans was due to the inhibition of C. albicans hyphal morphogenesis, a developmental program crucial to C. albicans pathogenicity. We discovered that the inhibition was partially dependent on the Fsr quorum-sensing system, a major regulator of virulence in E. faecalis. Specifically, two proteases regulated by Fsr, GelE and SerE, were partially required. Further characterization of the inhibitory signal revealed that it is secreted into the supernatant, is heat resistant, and is between 3 and 10 kDa. The substance was also shown to inhibit C. albicans filamentation in the context of an in vitro biofilm. Finally, a screen of an E. faecalis transposon mutant library identified other genes required for suppression of C. albicans hyphal formation. Overall, we demonstrate a biologically relevant interaction between two clinically important microbes that could affect treatment strategies as well as impact our understanding of interkingdom signaling and sensing in the human-associated microbiome.


Asunto(s)
Candida albicans/crecimiento & desarrollo , Candida albicans/patogenicidad , Candidiasis/microbiología , Coinfección/microbiología , Enterococcus faecalis/metabolismo , Infecciones por Bacterias Grampositivas/metabolismo , Animales , Proteínas Bacterianas/metabolismo , Biopelículas , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/microbiología , Candida albicans/metabolismo , Candidiasis/metabolismo , Coinfección/metabolismo , Infecciones por Bacterias Grampositivas/microbiología , Hifa/crecimiento & desarrollo , Hifa/metabolismo , Morfogénesis , Percepción de Quorum , Virulencia
20.
PLoS Pathog ; 7(12): e1002453, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22216003

RESUMEN

Infected animals will produce reactive oxygen species (ROS) and other inflammatory molecules that help fight pathogens, but can inadvertently damage host tissue. Therefore specific responses, which protect and repair against the collateral damage caused by the immune response, are critical for successfully surviving pathogen attack. We previously demonstrated that ROS are generated during infection in the model host Caenorhabditis elegans by the dual oxidase Ce-Duox1/BLI-3. Herein, an important connection between ROS generation by Ce-Duox1/BLI-3 and upregulation of a protective transcriptional response by SKN-1 is established in the context of infection. SKN-1 is an ortholog of the mammalian Nrf transcription factors and has previously been documented to promote survival, following oxidative stress, by upregulating genes involved in the detoxification of ROS and other reactive compounds. Using qRT-PCR, transcriptional reporter fusions, and a translational fusion, SKN-1 is shown to become highly active in the C. elegans intestine upon exposure to the human bacterial pathogens, Enterococcus faecalis and Pseudomonas aeruginosa. Activation is dependent on the overall pathogenicity of the bacterium, demonstrated by a weakened response observed in attenuated mutants of these pathogens. Previous work demonstrated a role for p38 MAPK signaling both in pathogen resistance and in activating SKN-1 upon exposure to chemically induced oxidative stress. We show that NSY-1, SEK-1 and PMK-1 are also required for SKN-1 activity during infection. Evidence is also presented that the ROS produced by Ce-Duox1/BLI-3 is the source of SKN-1 activation via p38 MAPK signaling during infection. Finally, for the first time, SKN-1 activity is shown to be protective during infection; loss of skn-1 decreases resistance, whereas increasing SKN-1 activity augments resistance to pathogen. Overall, a model is presented in which ROS generation by Ce-Duox1/BLI-3 activates a protective SKN-1 response via p38 MAPK signaling.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Unión al ADN/metabolismo , Enterococcus faecalis , Infecciones por Bacterias Grampositivas/metabolismo , Inmunidad Innata/fisiología , Sistema de Señalización de MAP Quinasas/fisiología , Oxidorreductasas/metabolismo , Infecciones por Pseudomonas/metabolismo , Pseudomonas aeruginosa , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/inmunología , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/inmunología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/inmunología , Activación Enzimática/genética , Activación Enzimática/inmunología , Infecciones por Bacterias Grampositivas/genética , Infecciones por Bacterias Grampositivas/inmunología , Mucosa Intestinal/metabolismo , Intestinos/inmunología , Intestinos/microbiología , Oxidorreductasas/genética , Oxidorreductasas/inmunología , Infecciones por Pseudomonas/genética , Infecciones por Pseudomonas/inmunología , Especies Reactivas de Oxígeno/inmunología , Factores de Transcripción/genética , Factores de Transcripción/inmunología , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...