Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 12(2): 1155-1163, 2020 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-31850433

RESUMEN

Isothermal tuning of both the magnitude and the sign of the bias field has been achieved by exploiting a new phenomenon in a system consisting of two orthogonally coupled films: SmCo5 (out-of-plane anisotropy)-CoFeB (in-plane anisotropy). This has been achieved by using the large dipolar magnetic field of the SmCo5 layer resulting in the pinning of one of the branches of the hysteresis loop (either the ascending or the descending branch) at a fixed field value while the second one is modulated along the field axis by varying the orientation of an externally applied magnetic field. This means the possibility of controlling the sign of the bias field in a manner not reported to date. Moreover, modulation of the bias field strength is possible by varying the thickness of a spacer between the SmCo5 and CoFeB layers. This study shows that the observed phenomena find their origin in the competition between the artificially induced anisotropies in both layers, resulting in a reversible chiral bias effect that allows the selection of the initial sign of the bias field by switching (upwards/downwards) the magnetization in the SmCo5 film.

2.
Sci Rep ; 7(1): 13474, 2017 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-29044206

RESUMEN

The Stoner-Wohlfarth (SW) model is the simplest model that describes adequately the magnetization reversal of nanoscale systems that are small enough to contain single magnetic domains. However for larger sizes where multi-domain effects are present, e.g., in thin films, this simple macrospin approximation fails and the experimental critical curve, referred as SW astroid, is far from its predictions. Here we show that this discrepancy could vanish also in extended system. We present a detailed angular-dependent study of magnetization reversal dynamics of a thin film with well-defined uniaxial magnetic anisotropy, performed over 9 decades of applied field sweep rate (dH/dt). The angular-dependent properties display a gradual transition from domain wall pinning and motion-like behaviour to a nucleative single-particle one, as dH/dt increases. Remarkably, in the high dynamic regime, where nucleation of reversed domains is the dominant mechanism of the magnetization reversal (nucleative regime), the magnetic properties including the astroid become closer to the ones predicted by SW model. The results also show why the SW model can successfully describe other extended systems that present nucleative regime, even in quasi-static conditions.

4.
Sci Rep ; 5: 15160, 2015 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-26477718

RESUMEN

Nanotechnology plays an increasingly important role in the biomedical arena. Iron oxide nanoparticles (IONPs)-labelled cells is one of the most promising approaches for a fast and reliable evaluation of grafted cells in both preclinical studies and clinical trials. Current procedures to label living cells with IONPs are based on direct incubation or physical approaches based on magnetic or electrical fields, which always display very low cellular uptake efficiencies. Here we show that centrifugation-mediated internalization (CMI) promotes a high uptake of IONPs in glioblastoma tumour cells, just in a few minutes, and via clathrin-independent endocytosis pathway. CMI results in controllable cellular uptake efficiencies at least three orders of magnitude larger than current procedures. Similar trends are found in human mesenchymal stem cells, thereby demonstrating the general feasibility of the methodology, which is easily transferable to any laboratory with great potential for the development of improved biomedical applications.


Asunto(s)
Rastreo Celular/métodos , Endocitosis , Gravitación , Nanopartículas , Línea Celular Tumoral , Centrifugación , Compuestos Férricos , Humanos , Nanopartículas de Magnetita
5.
Rev Sci Instrum ; 86(4): 046109, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25933907

RESUMEN

Here, we report on a versatile full angular resolved/broad temperature range/vectorial magneto optical Kerr effect (MOKE) magnetometer, named TRISTAN. Its versatility relies on its capacity to probe temperature and angular dependencies of magnetization reversal processes without the need to do any intervention on the apparatus during measurements. The setup is a combination of a vectorial MOKE bench and a cryostat with optical access. The cryostat has a motorized rotatable sample holder with azimuthal correction. It allows for simultaneous and quantitative acquisition of the two in-plane magnetization components during the hysteresis loop at different temperatures from 4 K up to 500 K and in the whole angular range, without neither changing magnet orientation nor opening the cryostat. Measurements performed in a model system with competing collinear biaxial and uniaxial contributions are presented to illustrate its capabilities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...