RESUMEN
(1) Background: The long-term survival of an endodontically treated tooth depends on a successful root canal treatment as well as an adequate definitive coronal restoration. This study aimed to evaluate the strength of endodontically treated premolars with mesial-occlusal-distal (MOD) cavity preparation restored with different direct coronal restoration materials but from the same manufacturer against fracture. (2) Methods: sixty intact premolars were selected and placed into five groups (n = 12): G1-intact teeth, G2-endodontic treatment and unrestored MOD cavities, G3-endodontic treatment and MOD cavities restored with Tetric PowerFlow and Tetric EvoCeram, G4-endodontic treatment and MOD cavities restored with Multicore Flow and Tetric EvoCeram, and G5-endodontic treatment and MOD cavities restored with Multicore Flow. The specimens were subjected to an axial compression load at a speed of 1.6 mm/min and optically inspected before and after with a stereomicroscope. For each premolars group, the following data were recorded: the compression resistance, the compressive strength, and the maximum force supported. The microstructure of the samples after the compression test was analyzed using scanning electron microscopy (SEM). (3) Results: statistical analysis (ANOVA and Tukey test) showed that there was a statistically significant difference between G1 and the other groups. Even though there was no statistically significant difference between the restored groups, a better mechanical behavior was registered within the G3. (4) Conclusions: this in vitro study indicated that none of the materials used can lead to a higher or at least similar fracture resistance as the intact teeth. The coronal restoration only with nano-hybrid composites may lead to a higher therapeutic benefit for the fracture-susceptible premolars.
RESUMEN
INTRODUCTION AND AIMS: Potential secondary or toxic effects of peroxide-based whitening gels have driven the search for alternative methods that use natural compounds with gentle action on tooth enamel that provide remineralizing benefits. METHODS: This study introduces four innovative experimental whitening gels (GC, G1, G3, G4) formulated with enzymes (Bromelaine and Papaine) and natural extracts, along with SiO2. The efficacy of these gels was tested on nanohybrid dental composite (EsCOM100, Spident Company) and dental enamel stained with coffee and natural juice (Tedi) over 10 days. The structural changes in samples before and after bleaching were examined using scanning electron microscopy and atomic force microscopy. Additionally, cytotoxicity tests were conducted on the gels using mesenchymal stem cells from human dental pulp (dMSC) and human keratinocytes (HaCaT). Antibacterial activity was assessed on five strains (Streptococcus mutans. Porphyromonas gingivalis; Enterococcus faecalis; Escherichia coli; Staphylococcus aureus). RESULTS: Coffee and natural juice stains significantly increase the roughness of composite and enamel surfaces by forming deposits. The enzymatic action of bromelain and papain effectively disorganizes and removes these clusters, significantly reducing surface roughness. CONCLUSION: Notably, the gel containing papain and nanostructured SiO2 proved to be the most effective in removing coffee stains from both composite surfaces and enamel. On the other hand, the gel with bromelain and nanostructured SiO2 was the most efficient in removing natural juice stains. The absence of SiO2 in the experimental gels slightly decreased the enzymes' effectiveness in stain removal. The antibacterial activity observed in the experimental gels is attributed solely to the enzymatic compounds.
RESUMEN
The aim of this study was to obtain three experimental resin-based cements containing GO and HA-Ag for posterior restorations. The samples (S0, S1, and S2) shared the same polymer matrix (BisGMA, TEGDMA) and powder mixture (bioglass (La2O3 and Sr-Zr), quartz, GO, and HA-Ag), with different percentages of graphene oxide (0%, 0.1%, 0.2% GO) and silver-doped hydroxyapatite (10%, 9.9%, 9.8% HA-Ag). The physical-chemical properties (water absorption, degree of conversion), mechanical properties (DTS, CS, FS), structural properties (SEM, AFM), and antibacterial properties (Staphylococcus aureus, Enterococcus faecalis, Streptococcus mutans, Porphyromonas gingivalis, and Escherichia coli) were investigated. The results showed that the mechanical properties, except for the diametral tensile test, increased with the rise in the %GO. After 28 days, water absorption increased with the rise in the %GO. The surface structure of the samples did not show major changes after water absorption for 28 days. The antibacterial effects varied depending on the samples and bacterial strains tested. After increasing the %GO and decreasing the %HA-Ag, we observed a more pronounced antibacterial effect. The presence of GO, even in very small percentages, improved the properties of the tested experimental cements.
RESUMEN
Short glass fibers are generally used in posterior dental restorations to enhance the mechanical properties and improve the material microstructure. Two resin-based composites (S0 and SF) were formulated and characterized to investigate the influence of zirconium in their characteristics and properties. The organic part of the investigated materials was the same (BisGMA, TEGDMA, and a photochemical polymerization system), and in the inorganic part, besides quart, glassA, and hydroxylapatite with Zn, sample S0 contained strontium glass with zirconium and sample SF contained fiber powder of chopped zirconium. The samples were characterized by the degree of conversion (DC), mechanical properties, water sorption (WS), scanning electron microscopy (SEM), atomic force microscopy (AFM) before and after the WS test, and antimicrobial properties. The results obtained were subjected to one-way ANOVA and Tukey's statistical tests. Both samples had a high DC. Regarding the mechanical properties, both samples were very similar, except DTS, which was higher for the composite without fibers. After 14 days, the WS value of the SF sample was lower than that of the S0 sample. Water caused significant changes in the topography of the SF sample, but thanks to its antimicrobial properties and the diffusion phenomenon, SF had a more pronounced antimicrobial effect. This study shows that the addition of appropriate amounts of Sr-Zr-glass powder gives the material in which it is added similar properties to material containing chopped zirconium glass fiber powder. According to the antimicrobial test results, resin composites containing experimental zirconia fillings can be considered in future in vitro clinical studies for posterior reconstructions with significantly improved mechanical properties.
RESUMEN
Whey and gelatin, natural polymers within the protein category, find widespread use in hydrogel formulations applied across the food, medical, and pharmaceutical industries. This study presents new characteristics of hydrogels based on whey, gelatin, and copper sulfate as a consequence of the additional steps in the preparation method, specifically refrigeration and freezing storage followed by lyophilization. The water state in hydrogels prior to lyophilization impacts the morphological appearance, with refrigerated hydrogels exhibiting a more regular and dense pore distribution, as shown by the Scanning Electron Microscopy (SEM) images. This observation aligns with the higher mobility of polymer chains indicated by T2 distributions in 1H nuclear magnetic resonance (RMN) relaxometry measurements. Changes in the intensity and amide-specific wavenumbers of the FTIR spectra of whey and gelatin proteins are evident in the Fourier Transformed Infrared (FTIR) spectra of crosslinked and frozen hydrogels before lyophilization. Moreover, the reinforcing effect in the hydrogel matrix, noted in mechanical tests, is attributed to increased polymer chain content and copper sulfate crosslinking.
RESUMEN
Dental caries is an avoidable and complex condition impacting billions of individuals worldwide, posing a specific concern among younger generations, despite the progress of oral hygiene products. This deterioration occurs due to the acid demineralization of tooth enamel, leading to the loss of minerals from the enamel subsurface. The remineralisation of early enamel carious lesions could prevent the cavitation of teeth. The enamel protein amelogenin constitutes 90% of the total enamel matrix protein and plays a key role in the bio mineralisation process. The aim of this study is to investigate the self-assembly microstructure and reticulation behaviour of a newly developed bioactive hydrogel with leucine-rich amelogenin peptide (LRAP) intended for enamel remineralisation. SEM, AFM, UV-VIS, and FTIR analyses emphasize the ability of peptides to promote cell adhesion and the treatment of early carious lesions. In conclusion, short-chain peptides can be used in hydrogels for individual or professional use.
RESUMEN
(1) Background: the current study investigated three nanohybrid composites: two commercial products ClearfilMajestyTM (CM) and HarmonizeTM (HU), compared with an experimental product PS2. (2) Methods: Two sample types were molded using Teflon dies. The first sample type was represented by standard discs (20 mm diameter and 2 mm thickness) (n = 60, 20/each material), used for surface conditioning investigation, specifically roughness monitoring and color stability analysis using AFM and the CIELab test, respectively. The second sample type was a standard cylindrical specimen (4 mm diameter and 6 mm height) for compression testing (n = 60, 20/each material). After complete polymerization, the samples were ground with sandpaper and further polished. The filler size and distribution in the polymer matrix were investigated with SEM. Data were statistically analyzed using the Anova Test followed by Tukey's post hoc test on the Origin Lab 2019 software produced by OriginLab Corporation, Northampton, MA, USA. (3) Results: A mono-disperse system was identified in HU samples, while CM and PS2 revealed both nano- and microfiller particles. The samples' observation after immersion in coffee and tea indicated that a lower roughness combined with optimal filler lamination within the polymer matrix assured the best color preservation. The compression strength was lower for the HU sample, while higher values were obtained for the complex filler systems within CM and PS2. (4) Conclusions: the behavior of the investigated nanohybrid composites strongly depends on the microstructural features.
RESUMEN
Dental crown marginal adaptation is a matter of the success of dental restoration treatment. Nowadays, there are many technological ways for crown manufacturing, such as tridimensional printing of an exactly desired shape through CAD-assisted systems and the appropriate shape milling of a predesigned bulk crown. Both methods are developed for patient benefits. The current research aims to investigate the marginal adaptation of E-Max crowns manufactured by printing-pressed and milling methods. The in vitro cementation procedures were effectuated on healthy teeth extracted for orthodontic purposes according to the standard procedures and the marginal adaptation was investigated with SEM microscopy. The restoration overview was inspected at a magnification of 100× and the microstructural details at 400×. The integrity of marginal adaptation was properly inspected in identical samples on segments of 2 mm from each buccal, palatal, distal and mesial side. The obtained results reveal a good marginal adaptation for all samples, with some particularities. The statistical analysis shows that the best values of the marginal adaptation were obtained for vestibular/buccal and palatal sides of the teeth being situated around 90-95%, while the values obtained for distal and mesial sides are slightly lower such as 80-90%. Furthermore, it was observed that the milled crowns presents better marginal adaptations than the printed-pressed ones, sustained by the statistical p < 0.05. This indicates that the milling process allows a better fit of the crown to the tooth surface and preserves the integrity of the bonding cement layer.
RESUMEN
Guided bone regeneration is frequently used to reconstruct the alveolar bone to rehabilitate the mastication using dental implants. The purpose of this article is to research the properties of eggshell membrane (ESM) and its potential application in tissue engineering. The study focuses on the structural, mechanical, and histological characteristics of ESM extracted from Gallus domesticus eggs and to compare them to a commercially available porcine pericardium membrane (Jason® membrane, botiss biomaterials GmbH, Zossen, Germany). Thus, histology was performed on the ESM, and a comparison of the microstructure through scanning electron microscopy and atomic force microscopy (AFM) was conducted. Also, mechanical tensile strength was evaluated. Samples of ESM were prepared and treated with alcohol for fixation and disinfection. Histological analysis revealed that the ESM architecture is constituted out of loose collagen fibers. However, due to the random arrangement of collagen fibers within the membrane, it might not be an effective barrier and occlusive barrier. Comparative analyses were performed between the ESM and the AFM examinations and demonstrated differences in the surface topography and mechanical properties between the two membranes. The ESM exhibited rougher surfaces and weaker mechanical cohesion attributed to its glycoprotein content. The study concludes that while the ESM displays favorable biocompatibility and resorb ability, its non-uniform collagen arrangement limits its suitability as a guided bone regeneration membrane in the current non-crosslinked native form. Crosslinking techniques may enhance its properties for such applications. Further research is needed to explore modifications and processing methods that could leverage the ESM's unique properties for tissue engineering purposes.
RESUMEN
Alternative techniques have been investigated for effectiveness in caries removal because conventional metallic dental burs can lead to an excessive loss of sound tissue. The aim of the present study is to realize a preliminary approach in obtaining effective polymer mixtures for polymeric bur development, capable of removing primary dental caries using combinations of polymers to ensure the requirements for such instruments, but also a greater compatibility with the teeth structure. This study assessed the main mechanical properties, water sorption, solubility and microscopic structure of four new polymer mixture recipes to provide essential features in obtaining experimental self-limited dental burs. Two mixtures have in their composition polymer mixtures of Bis-phenol A diglycidyl ether dimethacrylate/Triethylene glycol dimethacrylate/Urethane dimethacrylates (R1, R2), and two other mixtures have Bis-phenol A diglycidyl ether dimethacrylate/Polymethyl methacrylate/Methyl methacrylates (R3, R4). The incorporation of nanoparticles into the polymer matrix has become essential due to the need of polymer biocompatibility increasing along with teeth surface remineralization, so that the powder charge was added to four recipes, such as 5% glass with BaF2 and 0.5% graphene with silver particles. All data sets were analyzed using the One-Way ANOVA test. R3, R4 showed higher compressive strength and diametrical compression values; these values increased when glass and graphene were added. Moreover, the addition of glass particles lead to an increase in flexural strength. Regarding the sorption, sample R3 had the most significant differences between day 69 and the rest of the investigation days, while the solubility varied at different intervals. From the mechanical evaluation, we could conclude that the Bis-GMA/PMMA/MMA mixtures fit the mechanical characteristics supported by polymer burs, following future studies regarding their use on the affected dentin.
RESUMEN
Dental 3D-printing technologies, including stereolithography (SLA), polyjet (triple-jetting technology), and fusion deposition modeling, have revolutionized the field of orthodontic occlusal splint manufacturing. Three-dimensional printing is now currently used in many dental fields, such as restorative dentistry, prosthodontics, implantology, and orthodontics. This study aimed to assess the mechanical properties of 3D-printed materials and compare them with the conventional polymethylmethacrylate (PMMA). Compression, flexural, and tensile properties were evaluated and compared between PMMA samples (n = 20) created using the "salt and pepper" technique and digitally designed 3D-printed samples (n = 20). The samples were subjected to scanning electron microscope analysis. Statistical analysis revealed that the control material (PMMA) exhibited a significantly higher Young's modulus of compression and tensile strength (p < 0.05). In the flexural tests, the control samples demonstrated superior load at break results (p < 0.05). However, the 3D-printed samples exhibited significantly higher maximum bending stress at maximum load (MPa) (p < 0.05). Young's modulus of tensile testing (MPa) was statistically significant higher for the control samples, while the 3D-printed samples demonstrated significantly higher values for elongation at break (p < 0.05). These findings indicate that 3D-printed materials are a promising alternative that can be effectively utilized in clinical practice, potentially replacing traditional heat-cured resin in various applications.
RESUMEN
Calcium phosphate cements present increased biocompatibility due to their chemical composition being similar to that of the hydroxyapatite in the hard tissues of the living body. It has certain limitations due to its poor mechanical properties, such as low tensile strength and increased brittleness. Thus, the optimal way to improve properties is through the design of novel composite cements. The purpose was fulfilled using a 25% hydroxyethyl methacrylate (HEMA) mixed with 3% urethane dimethacrzlate (UDMA) base matrix with various ratios of polyethylene glycol (PEG 400) and polycaprolactone (PCL). Mineral filler is based on tricalcium phosphate (TCP) with different chitosan ratio used as bio-response enhancer additive. Four mixtures were prepared: S0-unfilled polymer matrix; S1 with 50% TCP filler; S2 with 50% chitosan + TCP filler; and S3 with 17.5% chitosan + TCP mixed with 17.5% nano hydroxyapatite (HA). The mechanical properties testing revealed that the best compressive strength was obtained by S2, followed by S3, and the worst value was obtained for the unfilled matrix. The same tendency was observed for tensile and flexural strength. These results show that the novel filler system increases the mechanical resistance of the TCP composite cements. Liquid exposure investigation reveals a relative constant solubility of the used filler systems during 21 days of exposure: the most soluble fillers being S3 and S2 revealing that the additivated TCP is more soluble than without additives ones. Thus, the filler embedding mode into the polymer matrix plays a key role in the liquid absorption. It was observed that additive filler enhances the hydrophobicity of UDMA monomer, with the matrix resulting in the lowest liquid absorption values, while the non-additivated samples are more absorbent due to the prevalence of hydrolytic aliphatic groups within PEG 400. The higher liquid absorption was obtained on the first day of immersion, and it progressively decreased with exposure time due to the relative swelling of the surface microstructural features. The obtained results are confirmed by the microstructural changes monitored by SEM microscopy. S3 and S2 present a very uniform and compact filler distribution, while S1 presents local clustering of the TCP powder at the contact with the polymer matrix. The liquid exposure revealed significant pore formation in S0 and S1 samples, while S3 and S2 proved to be more resistant against superficial erosion, proving the best resistance against liquid penetration.
RESUMEN
The present study is focused on polylactic acid (PLA) blending with bio nanoadditives, such as Tonsil® (clay) and Aerosil®, to obtain nanocomposites for a new generation of food packaging. The basic composition was enhanced using Sorbitan oleate (E494) and Proviplast as plasticizers, increasing the composite samples' stability and their mechanical strength. Four mixtures were prepared: S1 with Tonsil®; S2 with Aerosil®; S3 with Aerosil® + Proviplast; and S4 with Sabosorb. They were complexly characterized by FT-IR spectroscopy, differential scanning calorimetry, mechanical tests on different temperatures, and absorption of the saline solution. FTIR shows a proper embedding of the filler component into the polymer matrix and DSC presents a good stability at the living body temperature for all prepared samples. Micro and nanostructural aspects were evidenced by SEM and AFM microscopy, revealing that S3 has the most compact and uniform filler distribution and S4 has the most irregular one. Thus, S3 evidenced the best diametral tensile strength and S4 evidenced the weakest values. All samples present the best bending strength at 18 °C and fair values at 4 °C, with the best values being obtained for the S1 sample and the worst for S4. The lack of mechanical strength of the S4 sample is compensated by its best resistance at liquid penetration, while S1 is more affected by the liquid infiltrations. Finally, results show that PLA composites are suitable for biodegradable and disposable food packages, and the desired properties could be achieved by proper adjustment of the filler proportions.
RESUMEN
The goal of the current study was to determine the mechanical proprieties of polymethylmethacrylate (PMMA) and the improved compound, the graphene-based PMMA, with Zn and Ag and to compare the results. Scanning electron microscopy analysis of the samples before and after the mechanical test was conducted. The compression behavior, flexural properties, tensile strength, and shape of the samples were all investigated and compared between the variants of PMMA. Commercially available polymethylmethacrylate was used (Orthocryl®-Dentaurum, Ispringen, Germany) with the salt and pepper technique according to the manufacturer's instructions to produce 20 samples for each mechanical trial with standard cylinders (4 mm diameter × 8 mm length) for compression, parallelepipedal prisms for flexing (2 mm × 2 mm × 25 mm) and flat samples for traction. There was no statistical difference in the mechanical proprieties of the samples evaluated, although there were values that could suggest significance. The graphene-based PMMA demonstrated good mechanical proprieties, like the commercially available PMMA, and appears promising for future clinical use based on its multiple advantages.
RESUMEN
BACKGROUND: The aim was to assess, in vitro, the effects of radioiodine-131 (I-131) on the structure of titanium implants. MATERIAL AND METHODS: A total of 28 titanium implants were divided into 7 groups (n = 4) and irradiated at 0, 6, 12, 24, 48, 192 and 384 hours. At the end of the experiment, each sample was investigated via scanning electron microscopy (SEM) and electrochemical measures. RESULTS: The control sample revealed a smooth and compact surface. The small micro-sized porosity is slightly visible at the macroscopic level, but the precise details cannot be observed. A mild exposure to the radioactive solution for 6 to 24 h showed a good preservation of the macro-structural aspects such as thread details and surface quality. Significant changes occurred after 48 h of exposure. It was noticed that the open-circuit potential (OCP) value of the non-irradiated implants move toward more noble potentials during the first 40 min of exposure to the artificial saliva and then stabilizes at a constant value of -143 mV. A displacement of the OCP values toward more negative values was observed for all irradiated implants; these potential shifts are decreasing, as the irradiation period of the tested implants increased. CONCLUSION: After exposure to I-131, the structure of titanium implants is well preserved up to 12 h. The eroded particles start to appear in the microstructural details after 24 h of exposure and their numbers progressively increase up to 384 h after exposure.
RESUMEN
Among the newest trends in dental composites is the use of graphene oxide (GO) nanoparticles to assure better cohesion of the composite and superior properties. Our research used GO to enhance several hydroxyapatite (HA) nanofiller distribution and cohesion in three experimental composites CC, GS, GZ exposed to coffee and red wine staining environments. The presence of silane A-174 on the filler surface was evidenced by FT-IR spectroscopy. Experimental composites were characterized through color stability after 30 days of staining in red wine and coffee, sorption and solubility in distilled water and artificial saliva. Surface properties were measured by optical profilometry and scanning electron microscopy, respectively, and antibacterial properties wer e assessed against Staphylococcus aureus and Escherichia coli. A colour stability test revealed the best results for GS, followed by GZ, with less stability for CC. Topographical and morphological aspects revealed a synergism between GZ sample nanofiller components that conducted to the lower surface roughness, with less in the GS sample. However, surface roughness variation due to the stain was affected less than colour stability at the macroscopic level. Antibacterial testing revealed good effect against Staphylococcus aureus and a moderate effect against Escherichia coli.
RESUMEN
Composites based on polylactic acid (PLA) and copper for food packaging applications were obtained. Copper clusters were synthesized in polyethylene glycols 400 and 600, respectively, using ascorbic acid as a reducing agent, by reactive milling. Copper clusters were characterized by Scanning Electron Microscopy (SEM), Fourier Transform Infrared (FT-IR), and Ultraviolet-Visible (UV-VIS) spectroscopy. Copper/PLA composites containing Proviplast as plasticizer were characterized by FT-IR spectroscopy, mechanical tests, Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), absorption of the saline solution, contact angle, and antibacterial properties. It was observed that the concentration of Copper/PEG influenced the investigated properties. The mechanical properties of the samples decreased with the increasing of Copper/PEG concentration. We recorded the phase transformation temperatures and identified the exothermic or endothermic processes. The lowest absorption values were recorded in the case of the sample containing 1% Cu. The contact angle decreases with the increase in the concentration of the PEG 600-Cu mixture in the recipes. The increase in the content of Cu clusters favors the decrease in the temperature, taking place 15% wt mass losses. The obtained composites showed antibacterial properties for all tested strains. These materials could be used as alternative materials for obtaining biodegradable food packaging.
RESUMEN
Polyethylene terephthalate (PET) recycling is one of the most important environmental issues, assuring a cleaner environment and reducing the carbon footprint of technological products, taking into account the quantities used year by year. The recycling possibilities depend on the quality of the collected material and on the targeted product. Current research aims to increase recycling quantities by putting together recycled PET in an innovative way as a filler for the additive manufactured metallic lattice structure. Starting from the structures mentioned above, a new range of composite materials was created: IPC (interpenetrating phase composites), materials with a complex architecture in which a solid phase, the reinforcement, is uniquely combined with the other phase, heated to the temperature of melting. The lattice structure was modeled by the intersection of two rings using Solid Works, which generates the lattice structure, which was further produced by an additive manufacturing technique from 316L stainless steel. The compressive strength shows low values for recycled PET, of about 26 MPa, while the stainless-steel lattice structure has about 47 MPa. Recycled PET molding into the lattice structure increases its compressive strength at 53 MPa. The Young's moduli are influenced by the recycled PET reinforcement by an increase from about 1400 MPa for the bare lattice structure to about 1750 MPa for the reinforced structure. This sustains the idea that recycled PET improves the composite elastic behavior due to its superior Young's modulus of about 1570 MPa, acting synergically with the stainless-steel lattice structure. The morphology was investigated with SEM microscopy, revealing the binding ability of recycled PET to the 316L surface, assuring a coherent composite. The failure was also investigated using SEM microscopy, revealing that the microstructural unevenness may act as a local tensor, which promotes the interfacial failure within local de-laminations that weakens the composite, which finally breaks.
RESUMEN
Brackets are metallic dental devices that are very often associated with acidic soft drinks such as cola and energy drinks. Acid erosion may affect the bonding between brackets and the enamel surface. The purpose of this study was to investigate the characteristics of brackets' adhesion, in the presence of two different commercially available drinks. Sixty human teeth were divided into six groups and bonded with either resin-modified glass ionomer (RMGIC) or resin composite (CR). A shared bond test (SBS) was evaluated by comparing two control groups with four other categories, in which teeth were immersed in either Coca-ColaTM or Red BullTM energy drink. The debonding between the bracket and enamel was evaluated by SEM. The morphological aspect correlated with SBS results showed the best results for the samples exposed to artificial saliva. The best adhesion resistance to the acid erosion environment was observed in the group of teeth immersed in Red BullTM and with brackets bonded with RMGIC. The debonded structures were also exposed to Coca-ColaTM and Red BullTM to assess, by atomic force microscopy investigation (AFM), the erosive effect on the enamel surface after debonding and after polishing restoration. The results showed a significant increase in surface roughness due to acid erosion. Polishing restoration of the enamel surface significantly reduced the surface roughness that resulted after debonding, and inhibited acid erosion. The roughness values obtained from polished samples after exposure to Coca-ColaTM and Red BullTM were significantly lower in that case than for the debonded structures. Statistical results evaluating roughness showed that Red BullTM has a more erosive effect than Coca-Cola™. This result is supported by the large contact surface that resulted after debonding. In conclusion, the prolonged exposure of the brackets to acidic drinks affected the bonding strength due to erosion propagation into both the enamel-adhesive interface and the bonding layer. The best resistance to acid erosion was obtained by RMGIC.
Asunto(s)
Recubrimiento Dental Adhesivo , Soportes Ortodóncicos , Humanos , Propiedades de Superficie , Resinas Acrílicas , Resinas Compuestas , Ensayo de Materiales , Cementos de Resina/químicaRESUMEN
The present research is focused on three different classes of orthodontic cements: resin composites (e.g., BracePaste); resin-modified glass ionomer RMGIC (e.g., Fuji Ortho) and resin cement (e.g., Transbond). Their mechanical properties such as compressive strength, diametral tensile strength and flexural strength were correlated with the samples' microstructures, liquid absorption, and solubility in liquid. The results show that the best compressive (100 MPa) and flexural strength (75 Mpa) was obtained by BracePaste and the best diametral tensile strength was obtained by Transbond (230 MPa). The lowestvalues were obtained by Fuji Ortho RMGIC. The elastic modulus is relatively high around 14 GPa for BracePaste, and Fuji Ortho and Transbond have only 7 GPa. The samples were also subjected to artificial saliva and tested in different acidic environments such as Coca-Cola and Red Bull. Their absorption and solubility were investigated at different times ranging from 1 day to 21 days. Fuji Ortho presents the highest liquid absorption followed by Transbond, the artificial saliva has the best absorption and Red Bull has the lowest absorption. The best resistance to the liquids was obtained by BracePaste in all environments. Coca-Cola presents values four times greater than the ones observed for artificial saliva. Solubility tests show that BracePaste is more soluble in artificial saliva, and Fuji Ortho and Transbond are more soluble in Red Bull and Coca-Cola. Scanning electron microscopy (SEM) images evidenced a compact structure for BracePaste in all environments sustaining the lower liquid absorption values. Fuji Ortho and Transbond present a fissure network allowing the liquid to carry out in-depth penetration of materials. SEM observations are in good agreement with the atomic force microscopy (AFM) results. The surface roughness decreases with the acidity increasing for BracePaste meanwhile it increases with the acidity for Fuji Ortho and Transbond. In conclusion: BracePaste is recommended for long-term orthodontic treatment for patients who regularly consume acidic beverages, Fuji Ortho is recommended for short-term orthodontic treatment for patients who regularly consume acidic beverages and Transbond is recommended for orthodontic treatment over an average time period for patients who do not regularly consume acidic beverages.