Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 63(17): 7955-7965, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38634659

RESUMEN

Curcuminoids and their complexes continue to attract attention in medicinal chemistry, but little attention has been given to their metabolic derivatives. Here, the first examples of (arene)Ru(II) complexes with curcuminoid metabolites, tetrahydrocurcumin (THcurcH), and tetrahydrobisdesmethoxycurcumin (THbdcurcH) were prepared and characterized. The neutral complexes [Ru(arene)(THcurc)Cl] and [Ru(arene)(THbdcurc)Cl] (arene = cymene, benzene, or hexamethylbenzene) were characterized by NMR spectroscopy and ESI mass spectrometry, and the crystal structures of the three complexes were determined by X-ray diffraction analysis. Compared to curcuminoids, these metabolites lose their conjugated double bond system responsible for their planarity, showing unique closed conformation structures. Both closed and open conformations have been analyzed and rationalized by using density functional theory (DFT). The cytotoxicity of the complexes was evaluated in vitro against human ovarian carcinoma cells (A2780 and A2780cisR), human breast adenocarcinoma cells (MCF-7 and MCF-7CR), as well as against non-tumorigenic human embryonic kidney cells (HEK293) and human breast (MCF-10A) cells and compared to the free ligands, cisplatin, and RAPTA-C. There is a correlation between cellular uptake and the cytotoxicity of the compounds, suggesting that cellular uptake and binding to nuclear DNA may be the major pathway for cytotoxicity. However, the levels of complex binding to DNA do not strictly correlate with the cytotoxic potency, indicating that other mechanisms are also involved. In addition, treatment of MCF-7 cells with [Ru(cym)(THcurc)Cl] showed a significant decrease in p62 protein levels, which is generally assumed as a noncisplatin-like mechanism of action involving autophagy. Hence, a cisplatin- and a noncisplatin-like concerted mechanism of action, involving both apoptosis and autophagy, is possible.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Curcumina , Ensayos de Selección de Medicamentos Antitumorales , Rutenio , Humanos , Curcumina/farmacología , Curcumina/química , Curcumina/análogos & derivados , Curcumina/metabolismo , Rutenio/química , Rutenio/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Complejos de Coordinación/síntesis química , Diarilheptanoides/química , Diarilheptanoides/farmacología , Diarilheptanoides/síntesis química , Proliferación Celular/efectos de los fármacos , Estructura Molecular , Línea Celular Tumoral , Modelos Moleculares , Teoría Funcional de la Densidad , Supervivencia Celular/efectos de los fármacos , Células HEK293
2.
Sci Rep ; 14(1): 8042, 2024 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580785

RESUMEN

Cell-free protein synthesis (CFPS) systems offer a versatile platform for a wide range of applications. However, the traditional methods for detecting proteins synthesized in CFPS, such as radioactive labeling, fluorescent tagging, or electrophoretic separation, may be impractical, due to environmental hazards, high costs, technical complexity, and time consuming procedures. These limitations underscore the need for new approaches that streamline the detection process, facilitating broader application of CFPS. By harnessing the reassembly capabilities of two GFP fragments-specifically, the GFP1-10 and GFP11 fragments-we have crafted a method that simplifies the detection of in vitro synthesized proteins called FAST (Fluorescent Assembly of Split-GFP for Translation Tests). FAST relies on the fusion of the small tag GFP11 to virtually any gene to be expressed in CFPS. The in vitro synthesized protein:GFP11 can be rapidly detected in solution upon interaction with an enhanced GFP1-10 fused to the Maltose Binding Protein (MBP:GFP1-10). This interaction produces a fluorescent signal detectable with standard fluorescence readers, thereby indicating successful protein synthesis. Furthermore, if required, detection can be coupled with the purification of the fluorescent complex using standardized MBP affinity chromatography. The method's versatility was demonstrated by fusing GFP11 to four distinct E. coli genes and analyzing the resulting protein synthesis in both a homemade and a commercial E. coli CFPS system. Our experiments confirmed that the FAST method offers a direct correlation between the fluorescent signal and the amount of synthesized protein:GFP11 fusion, achieving a sensitivity threshold of 8 ± 2 pmol of polypeptide, with fluorescence plateauing after 4 h. Additionally, FAST enables the investigation of translation inhibition by antibiotics in a dose-dependent manner. In conclusion, FAST is a new method that permits the rapid, efficient, and non-hazardous detection of protein synthesized within CFPS systems and, at the same time, the purification of the target protein.


Asunto(s)
Colorantes , Escherichia coli , Proteínas Fluorescentes Verdes/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fluorescencia , Colorantes/metabolismo
3.
Antioxidants (Basel) ; 13(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38539843

RESUMEN

Alzheimer's disease is a neurodegeneration with protein deposits, altered proteolysis, and inflammatory and oxidative processes as major hallmarks. Despite the continuous search for potential therapeutic treatments, no cure is available to date. The use of natural molecules as adjuvants in the treatment of Alzheimer's disease is a very promising strategy. In this regard, ginsenosides from ginseng root show a variety of biological effects. Here, we dissected the role of ginsenosides Rg1 and Rg2 in modulating autophagy and oxidative stress in neuroblastoma cells overexpressing Aß(1-42). Key hallmarks of these cellular processes were detected through immunomethods and fluorometric assays. Our findings indicate that ginsenosides are able to upregulate autophagy in neuronal cells as demonstrated by increased levels of LC3II and Beclin-1 proteins and decreased amounts of p62. Simultaneously, an activation of lysosomal hydrolases was observed. Furthermore, autophagy activation promoted the clearance of Aß(1-42). Rg1 and Rg2 also reduced oxidative stress sources and macromolecule oxidation, promoting NRF2 nuclear translocation and the expression of antioxidant enzymes. Our data further clarify the mechanisms of action of Rg1 and Rg2, indicating new insights into their role in the management of disorders like Alzheimer's disease.

4.
Arthritis Rheumatol ; 76(4): 620-630, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37975161

RESUMEN

OBJECTIVE: The etiopathogenesis of systemic sclerosis (SSc) is unknown. Platelet-derived growth factor receptors (PDGFRs) are overexpressed in patients with SSc. Because PDGFRα is targeted by the adeno-associated virus type 5 (AAV5), we investigated whether AAV5 forms a complex with PDGFRα exposing epitopes that may induce the immune responses to the virus-PDGFRα complex. METHODS: The binding of monomeric human PDGFRα to the AAV5 capsid was analyzed by in silico molecular docking, surface plasmon resonance (SPR), and genome editing of the PDGFRα locus. AAV5 was detected in SSc lungs by in situ hybridization, immunohistochemistry, confocal microscopy, and molecular analysis of bronchoalveolar lavage (BAL) fluid. Immune responses to AAV5 and PDGFRα were evaluated by SPR using SSc monoclonal anti-PDGFRα antibodies and immunoaffinity-purified anti-PDGFRα antibodies from sera of patients with SSc. RESULTS: AAV5 was detected in the BAL fluid of 41 of 66 patients with SSc with interstitial lung disease (62.1%) and in 17 of 66 controls (25.75%) (P < 0.001). In SSc lungs, AAV5 localized in type II pneumocytes and in interstitial cells. A molecular complex formed of spatially contiguous epitopes of the AAV5 capsid and of PDGFRα was identified and characterized. In silico molecular docking analysis and binding to the agonistic anti-PDGFRα antibodies identified spatially contiguous epitopes derived from PDGFRα and AAV5 that interacted with SSc agonistic antibodies to PDGFRα. These peptides were also able to bind total IgG isolated from patients with SSc, not from healthy controls. CONCLUSION: These data link AVV5 with the immune reactivity to endogenous antigens in SSc and provide a novel element in the pathogenesis of SSc.


Asunto(s)
Enfermedades Pulmonares Intersticiales , Esclerodermia Sistémica , Humanos , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Epítopos , Dependovirus/metabolismo , Autoanticuerpos , Simulación del Acoplamiento Molecular , Esclerodermia Sistémica/patología , Péptidos , Pulmón/patología
5.
Mol Neurobiol ; 60(5): 2787-2800, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36729287

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegeneration with dysfunctions in both the ubiquitin-proteasome system (UPS) and autophagy. Astroglia participation in AD is an attractive topic of research, but molecular patterns are partially defined and available in vitro models have technical limitations. Immortalized astrocytes from the hippocampus of 3xTg-AD and wild-type mice (3Tg-iAstro and WT-iAstro, respectively) have been obtained as an attempt to overcome primary cell line limitations and this study aims at characterizing their proteolytic systems, focusing on UPS and autophagy. Both 26S and 20S proteasomal activities were downregulated in 3Tg-iAstro, in which a shift in catalytic subunits from constitutive 20S proteasome to immunoproteasome occurred, with consequences on immune functions. In fact, immunoproteasome is the specific complex in charge of clearing damaged proteins under inflammatory conditions. Parallelly, augmented expression and activity of the lysosomal cathepsin B, enhanced levels of lysosomal-associated membrane protein 1, beclin1, and LC3-II, together with an increased uptake of monodansylcadaverine in autophagic vacuoles, suggested autophagy activation in 3Tg-iAstro. The two proteolytic pathways were linked by p62 that accumulated in 3Tg-iAstro due to both increased synthesis and decreased degradation in the UPS defective astrocytes. Treatment with 4-phenylbutyric acid, a neuroprotective small chemical chaperone, partially restored proteasome and autophagy-mediated proteolysis in 3Tg-iAstro. Our data shed light on the impaired proteostasis in 3Tg-iAstro with proteasome inhibition and autophagic compensatory activation, providing additional validation of this AD in vitro model, and propose a new mechanism of action of 4-phenylbutyric acid in neurodegenerative disorders.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Proteolisis , Enfermedad de Alzheimer/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Astrocitos/metabolismo , Ubiquitina/metabolismo , Factores de Transcripción/metabolismo , Autofagia/fisiología
6.
J Med Chem ; 66(5): 3212-3225, 2023 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-36802330

RESUMEN

A series of Ga(Qn)3 coordination compounds have been synthesized, where HQn is 1-phenyl-3-methyl-4-RC(═O)-pyrazolo-5-one. The complexes have been characterized through analytical data, NMR and IR spectroscopy, ESI mass spectrometry, elemental analysis, X-ray crystallography, and density functional theory (DFT) studies. Cytotoxic activity against a panel of human cancer cell lines was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, with interesting results in terms of both cell line selectivity and toxicity values compared with cisplatin. The mechanism of action was explored by spectrophotometric, fluorometric, chromatographic, immunometric, and cytofluorimetric assays, SPR biosensor binding studies, and cell-based experiments. Cell treatment with gallium(III) complexes promoted several cell death triggering signals (accumulation of p27, PCNA, PARP fragments, activation of the caspase cascade, and inhibition of the mevalonate pathway) and induced changes in cell redox homeostasis (decreased levels of GSH/GPX4 and NADP(H), increased reactive oxygen species (ROS) and 4-hydroxynonenal (HNE), mitochondrial damage, and increased activity of CPR and CcO), identifying ferroptosis as the mechanism responsible for cancer cell death.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Ferroptosis , Galio , Neoplasias , Humanos , Línea Celular Tumoral , Ácido Mevalónico/farmacología , Galio/farmacología , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Apoptosis , Antineoplásicos/farmacología , Antineoplásicos/química , Homeostasis , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo
7.
Molecules ; 27(21)2022 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-36364419

RESUMEN

BACKGROUND: Breast cancer is the most diagnosed cancer among women, and its incidence and mortality are rapidly growing worldwide. In this regard, plant-derived natural compounds have been shown to be effective as chemotherapeutic and preventative agents. Apricot kernels are a rich source of nutrients including proteins, lipids, fibers, and phenolic compounds and contain the aromatic cyanogenic glycoside amygdalin that has been shown to exert a cytotoxic effect on cancer cells by affecting the cell cycle, inducing apoptosis, and regulating the immune function. METHODS: Here, we describe a previously unexplored proapoptotic mechanism of action of amygdalin in breast cancer (MCF7) cells that involves the modulation of intracellular proteolysis. For comparative purposes, the same investigations were also conducted upon cell treatment with two apricot kernel aqueous extracts from Prunus armeniaca L. RESULTS: We observed that both the 20S and 26S proteasome activities were downregulated in the MCF7 cells upon 24 h treatments. Simultaneously, the autophagy cascade resulted in being impaired due to cathepsin B and L inhibition that also contributed to a reduction in cancer cell migration. The inhibition of these proteolytic systems finally promoted the activation of apoptotic events in the MCF7 cells. CONCLUSION: Collectively, our data unveil a novel mechanism of the anticancer activity of amygdalin, prompting further investigations for potential application in cancer preventative strategies.


Asunto(s)
Amigdalina , Neoplasias de la Mama , Prunus armeniaca , Femenino , Humanos , Amigdalina/farmacología , Proteolisis , Neoplasias de la Mama/tratamiento farmacológico , Apoptosis
8.
Dalton Trans ; 51(35): 13311-13321, 2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-35983757

RESUMEN

We have recently reported a series of half-sandwich ruthenium(II) complexes with curcuminoid ligands showing excellent cytotoxic activities (particularly ionic derivatives containing PTA (PTA = 1,3,5-triaza-7-phosphaadamantane). In the present study, new members of this family of compounds have been prepared with the objective to investigate the effect of a long hydrophobic chain obtained by replacing the OH-groups, present in curcumin and bisdemethoxycurcumin, with the palmitic acid ester. We report the synthesis of ruthenium(II) and osmium(II) p-cymene derivatives containing palmitic acid curcumin ester ligands ((1E,3Z,6E)-3-hydroxy-5-oxohepta-1,3,6-triene-1,7-diyl)bis(2-methoxy-4,1-phenylene)dipalmitate (p-curcH) and ((1E,3Z,6E)-3-hydroxy-5-oxohepta-1,3,6-triene-1,7-diyl)bis(4,1-phenylene)dipalmitate (p-bdcurcH). Complexes [M(II)(cym)(p-curc)/(p-bdcurc)(Cl)] 1-4 (M = Ru or Os) are neutral, whereas [M(II)(cym)(p-curc)/(p-bdcurc)(PTA)][SO3CF3] 5-8 are salts obtained when the chloride ligand is replaced by the PTA ligand. Stability studies performed on 1-8 in DMSO-PBS under physiological conditions (pH = 7.4) indicate that the complexes remain intact. The complexes exhibit potent and selective cytotoxic activity against an ovarian carcinoma cell line and its cisplatin-resistant form (A2780 and A2780cis), and non-cancerous human embryonic kidney (HEK293T) cells. To define the structure-activity relationships (SAR), the compounds have been compared with other Ru(II) and Os(II) complexes with curcuminoid ligands previously reported. SAR data reveal that the bisdemethoxycurcumin complexes are generally more active and selective than analogous curcumin-containing complexes.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Curcumina , Compuestos Organometálicos , Neoplasias Ováricas , Rutenio , Antineoplásicos/química , Línea Celular Tumoral , Complejos de Coordinación/química , Curcumina/química , Curcumina/farmacología , Diarilheptanoides/uso terapéutico , Ésteres , Femenino , Células HEK293 , Humanos , Ligandos , Compuestos Organometálicos/química , Osmio/química , Neoplasias Ováricas/tratamiento farmacológico , Ácido Palmítico/uso terapéutico , Rutenio/química
9.
Int J Mol Sci ; 23(15)2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35955845

RESUMEN

Alzheimer's disease (AD) is a fatal neurodegenerative disorder associated with severe dementia, progressive cognitive decline, and irreversible memory loss. Although its etiopathogenesis is still unclear, the aggregation of amyloid-ß (Aß) peptides into supramolecular structures and their accumulation in the central nervous system play a critical role in the onset and progression of the disease. On such a premise, the inhibition of the early stages of Aß aggregation is a potential prevention strategy for the treatment of AD. Since several natural occurring compounds, as well as metal-based molecules, showed promising inhibitory activities toward Aß aggregation, we herein characterized the interaction of an organoruthenium derivative of curcumin with Aß(1-40) and Aß(1-42) peptides, and we evaluated its ability to inhibit the oligomerization/fibrillogenesis processes by combining in silico and in vitro methods. In general, besides being less toxic to neuronal cells, the derivative preserved the amyloid binding ability of the parent compound in terms of equilibrium dissociation constants but (most notably) was more effective both in retarding the formation and limiting the size of amyloid aggregates by virtue of a higher hindering effect on the amyloid-amyloid elongation surface. Additionally, the complex protected neuronal cells from amyloid toxicity.


Asunto(s)
Enfermedad de Alzheimer , Curcumina , Rutenio , Enfermedad de Alzheimer/metabolismo , Amiloide/química , Péptidos beta-Amiloides/metabolismo , Curcumina/farmacología , Humanos , Rutenio/farmacología
11.
Biophys Chem ; 286: 106820, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35468399

RESUMEN

The presence of citrullinated adenosine deaminase (ADA) was reported in the synovial fluids of rheumatoid arthritis individuals. This work reports the effects of ADA citrullination on the formation/stabilization of ADA complex with dipeptidyl peptidase IV (DPPIV). The electrophoretic mobility of in vivo citrullinated ADA was diminished compared to the native one. The biosensor binding study demonstrated approximately four-fold lower affinity of both in vivo and in vitro citrullinated ADAs to DPPIV (KD = 161 ± 51.3 and 171 ± 52.2 nM, respectively) compared with wild ADA (KD = 38 ± 9.4 nM). These results were confirmed by examining the ADA interaction with DPPIV using size-exclusion chromatography and fluorescence anisotropy methods. The computational modeling of Arg142 â†’ Cit142 modification in ADA showed a local structural rearrangement and a less favorable binding affinity to DPPIV. According to these observations, citrullinated ADA being a possible target triggering autoimmunity hinders also the formation of ADA-DPPIV complex, essential in immune system function.


Asunto(s)
Adenosina Desaminasa , Citrulinación , Dipeptidil Peptidasa 4 , Adenosina Desaminasa/química , Adenosina Desaminasa/metabolismo , Dipeptidil Peptidasa 4/química , Dipeptidil Peptidasa 4/genética , Dipeptidil Peptidasa 4/metabolismo , Humanos
12.
J Biol Chem ; 298(3): 101669, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35120922

RESUMEN

The secreted form of the enzyme nicotinamide phosphoribosyltransferase (NAMPT), which catalyzes a key reaction in intracellular NAD biosynthesis, acts as a damage-associated molecular pattern triggering Toll-like receptor 4 (TLR4)-mediated inflammatory responses. However, the precise mechanism of interaction is unclear. Using an integrated approach combining bioinformatics and functional and structural analyses, we investigated the interaction between NAMPT and TLR4 at the molecular level. Starting from previous evidence that the bacterial ortholog of NAMPT cannot elicit the inflammatory response, despite a high degree of structural conservation, two positively charged areas unique to the human enzyme (the α1-α2 and ß1-ß2 loops) were identified as likely candidates for TLR4 binding. However, alanine substitution of the positively charged residues within these loops did not affect either the oligomeric state or the catalytic efficiency of the enzyme. The kinetics of the binding of wildtype and mutated NAMPT to biosensor-tethered TLR4 was analyzed. We found that mutations in the α1-α2 loop strongly decreased the association rate, increasing the KD value from 18 nM, as determined for the wildtype, to 1.3 µM. In addition, mutations in the ß1-ß2 loop or its deletion increased the dissociation rate, yielding KD values of 0.63 and 0.22 µM, respectively. Mutations also impaired the ability of NAMPT to trigger the NF-κB inflammatory signaling pathway in human cultured macrophages. Finally, the involvement of the two loops in receptor binding was supported by NAMPT-TLR4 docking simulations. This study paves the way for future development of compounds that selectively target eNAMPT/TLR4 signaling in inflammatory disorders.


Asunto(s)
Citocinas , Nicotinamida Fosforribosiltransferasa , Receptor Toll-Like 4 , Citocinas/genética , Citocinas/metabolismo , Humanos , NAD/metabolismo , FN-kappa B/metabolismo , Nicotinamida Fosforribosiltransferasa/genética , Nicotinamida Fosforribosiltransferasa/metabolismo , Unión Proteica , Transducción de Señal , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo
13.
Clin Nutr ; 41(3): 698-708, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35158177

RESUMEN

BACKGROUND & AIMS: Alzheimer's disease (AD) and age-related dementias represent a major and increasing global health challenge. Unhealthy diet and lifestyle can unbalance the intestinal microbiota composition and, consequently energy metabolism, contributing to AD pathogenesis. Impairment of cerebral cholesterol metabolism occurs in both aging and AD, and lipid-lowering agents have been associated to a lower risk of neurodegenerative diseases, but the link between blood lipid profile and AD remains a matter of debate. Recently, probiotics have emerged as a promising and safe strategy to manipulate gut microbiota composition and increase the host health status through a multi-level mechanism that is currently under investigation. Specifically, oral supplementation with a multi-strain probiotic formulation (SLAB51) reduced amyloid beta aggregates and brain damages in a triple transgenic mouse model of AD (3xTg-AD). Treated mice showed improved cognitive functions in response to an enrichment of gut anti-inflammatory metabolites, increased plasma concentrations of neuroprotective gut hormones, and ameliorated glucose uptake and metabolism. METHODS: This work focuses on the evaluation of the effects of SLAB51 chronic administration on lipid metabolism in 3xTg-AD mice and the respective wild-type counterpart. On this purpose, 8 weeks old mice were orally administered with SLAB51 for 4 and 12 months to analyze the plasma lipid profile (using lipidomic analyses and enzymatic colorimetric assays), along with the cerebral and hepatic expression levels of key regulators of cholesterol metabolism (through Western blotting and ELISA). RESULTS: Upon probiotics administration, cholesterol biosynthesis was inhibited in AD mice with a process involving sterol regulatory element binding protein 1c and liver X receptors mediated pathways. Decreased plasma and brain concentration of 27-hydroxycholesterol and increased brain expression of cholesterol 24S-hydroxylase indicated that alternative pathways of bile acid synthesis are influenced. The plasmatic increase of arachidonic acid in treated AD mice reflects dynamic interactions among several actors of a complex inflammatory response, in which polyunsaturated fatty acids can compete each other and simultaneously co-operate in the resolution of inflammation. CONCLUSIONS: These evidence, together with the hypocholesterolemic effects, the ameliorated fatty acids profile and the decreased omega 6/omega 3 ratio successfully demonstrated that microbiota modulation through probiotics can positively change lipid composition in AD mice, with arachidonic acid representing one important hub metabolite in the interactions among probiotic-induced lipid profile changes, insulin sensitivity, and inflammation.


Asunto(s)
Enfermedad de Alzheimer , Microbioma Gastrointestinal , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/terapia , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/farmacología , Animales , Ácidos Araquidónicos/farmacología , Humanos , Inflamación/complicaciones , Metabolismo de los Lípidos , Lípidos/farmacología , Ratones
14.
Nanomaterials (Basel) ; 11(7)2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34209361

RESUMEN

Silver nanoparticles (AgNPs) can be used as a surface plasmon resonance (SPR) colorimetric sensor; the correlation between the SPR phenomenon and the aggregation state of nanoparticle allows the real-time detection of a target molecule. Surface functionalization of NPs with proper molecular baits is often performed to establish the selectivity of the sensor. This work reports on the synthesis of AgNPs under reducing conditions and on the functionalization thereof with mercaptoundecanoic acid (11-MUA). UV-VIS Spectroscopy confirmed the formation of AgNPs, eliciting a surface plasmon absorption band (SPAB) at 393 nm that shifted to 417 nm upon surface coating. Dynamic light scattering was used to investigate the surface coatings; moreover, pelleted AgNPs@11MUA nanoparticles were characterized by scanning electron microscopy (SEM), energy dispersive X-ray analyzers (EDX), and infrared spectroscopy to corroborate the presence of 11MUA on the surface. Most interestingly, the resulting AgNPs@11MUA selectively detected micromolar levels of Ni2+, also in the presence of other cations such as Mn2+, Co2+, Cd2+, Cu2+, Zn2+, Fe2+, Hg2+, Pb2+, and Cr3+.

15.
Mol Nutr Food Res ; 65(18): e2100380, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34318994

RESUMEN

INTRODUCTION: Alzheimer's disease (AD) is a progressive neurodegeneration characterized by extensive protein aggregation and deposition in the brain, associated with defective proteasomal and autophagic-lysosomal proteolytic pathways. Since current drugs can only reduce specific symptoms, the identification of novel treatments is a major concern in AD research. Among natural compounds, (poly)phenols and their derivatives/metabolites are emerging as candidates in AD prevention due to their multiple beneficial effects. This study aims to investigate the ability of a selection of phenyl-γ-valerolactones, gut microbiota-derived metabolites of flavan-3-ols, to modulate the functionality of cellular proteolytic pathways. METHODS AND RESULTS: Neuronal SH-SY5Y cells transfected with either the wild-type or the 717 valine-to-glycine amyloid precursor protein mutated gene are used as an AD model and treated with 5-(4'-hydroxyphenyl)-γ-valerolactone, 5-(3',4'-dihydroxyphenyl)-γ-valerolactone and 5-(3'-hydroxyphenyl)-γ-valerolactone-4'-sulfate. Combining in vitro and in silico studies, it is observed that the phenyl-γ-valerolactones of interest modulated cellular proteolysis via proteasome inhibition and consequent autophagy upregulation and inhibited cathepsin B activity, eventually reducing the amount of intra- and extracellular amyloid-beta (1-42) peptides. CONCLUSION: The findings of this study establish, for the first time, that these metabolites exert a neuroprotective activity by regulating intracellular proteolysis and confirm the role of autophagy and cathepsin B as possible targets of AD preventive/therapeutic strategies.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Flavonoides/metabolismo , Lactonas/farmacología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fragmentos de Péptidos/metabolismo , Enfermedad de Alzheimer/metabolismo , Autofagia/efectos de los fármacos , Autofagia/fisiología , Catepsina B/metabolismo , Línea Celular Tumoral , Microbioma Gastrointestinal , Humanos , Enlace de Hidrógeno , Lactonas/química , Simulación del Acoplamiento Molecular , Neuronas/patología , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/metabolismo , Fármacos Neuroprotectores/farmacología , Complejo de la Endopetidasa Proteasomal/química , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis
16.
FEBS J ; 288(9): 2836-2855, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-32969566

RESUMEN

The gut microbiota coevolves with its host, and numerous factors like diet, lifestyle, drug intake and geographical location continuously modify its composition, deeply influencing host health. Recent studies demonstrated that gut dysbiosis can alter normal brain function through the so-called gut-brain axis, a bidirectional communication network between the central nervous system and the gastrointestinal tract, thus playing a key role in the pathogenesis of neurodegenerative disorders, such as Alzheimer's disease (AD). In this perspective, in the constant search for novel treatments in AD, the rational modulation of gut microbiota composition could represent a promising approach to prevent or delay AD onset or to counteract its progression. Preclinical and human studies on microbiota modulation through oral bacteriotherapy and faecal transplantation showed anti-inflammatory and antioxidant effects, upregulation of plasma concentration of neuroprotective hormones, restoration of impaired proteolytic pathways, amelioration of energy homeostasis with consequent decrease of AD molecular hallmarks and improvement of behavioural and cognitive performances. In this review, we dissect the role of gut microbiota in AD and highlight recent advances in the development of new multitarget strategies for microbiota modulation to be used as possible preventative and therapeutic approaches in AD.


Asunto(s)
Enfermedad de Alzheimer/microbiología , Microbioma Gastrointestinal/genética , Inflamación/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/prevención & control , Enfermedad de Alzheimer/terapia , Antioxidantes/uso terapéutico , Encéfalo/metabolismo , Encéfalo/patología , Humanos , Inflamación/genética , Fármacos Neuroprotectores/uso terapéutico
17.
Aging (Albany NY) ; 12(16): 15995-16020, 2020 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-32855357

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegeneration characterized by neuron death ending in memory and cognitive decline. A major concern in AD research is the identification of new therapeutics that could prevent or delay the onset of the disorder, with current treatments being effective only in reducing symptoms. In this perspective, the use of engineered probiotics as therapeutic tools for the delivery of molecules to eukaryotic cells is finding application in several disorders. This work introduces a new strategy for AD treatment based on the use of a Lactobacilluslactis strain carrying one plasmid (pExu) that contains a eukaryotic expression cassette encoding the human p62 protein. 3xTg-AD mice orally administered with these bacteria for two months showed an increased expression of endogenous p62 in the brain, with a protein delivery mechanism involving both lymphatic vessels and neural terminations, and positive effects on the major AD hallmarks. Mice showed ameliorated memory, modulation of the ubiquitin-proteasome system and autophagy, reduced levels of amyloid peptides, and diminished neuronal oxidative and inflammatory processes. Globally, we demonstrate that these extremely safe, non-pathogenic and non-invasive bacteria used as delivery vehicles for the p62 protein represent an innovative and realistic therapeutic approach in AD.


Asunto(s)
Enfermedad de Alzheimer/prevención & control , Encéfalo/metabolismo , Terapia Genética , Vectores Genéticos , Lactobacillus/genética , Probióticos , Proteína Sequestosoma-1/genética , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/fisiopatología , Péptidos beta-Amiloides/metabolismo , Animales , Conducta Animal , Encéfalo/patología , Encéfalo/fisiopatología , Cognición , Modelos Animales de Enfermedad , Microbioma Gastrointestinal , Mediadores de Inflamación/metabolismo , Lactobacillus/metabolismo , Masculino , Memoria , Ratones Transgénicos , Prueba de Campo Abierto , Estrés Oxidativo , Proteína Sequestosoma-1/biosíntesis
18.
Sci Rep ; 10(1): 13150, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32753591

RESUMEN

Virtual screening techniques and in vitro binding/inhibitory assays were used to search within a set of more than 8,000 naturally occurring small ligands for candidate inhibitors of 8-hydroxy-5-deazaflavin:NADPH oxidoreductase (FNO) from Methanobrevibacter smithii, the enzyme that catalyses the bidirectional electron transfer between NADP+ and F420H2 during the intestinal production of CH4 from CO2. In silico screening using molecular docking classified the ligand-enzyme complexes in the range between - 4.9 and - 10.5 kcal/mol. Molecular flexibility, the number of H-bond acceptors and donors, the extent of hydrophobic interactions, and the exposure to the solvent were the major discriminants in determining the affinity of the ligands for FNO. In vitro studies on a group of these ligands selected from the most populated/representative clusters provided quantitative kinetic, equilibrium, and structural information on ligands' behaviour, in optimal agreement with the predictive computational results.


Asunto(s)
Proteínas Bacterianas , Inhibidores Enzimáticos/química , Methanobrevibacter/enzimología , NADH NADPH Oxidorreductasas , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , Dominio Catalítico , NADH NADPH Oxidorreductasas/antagonistas & inhibidores , NADH NADPH Oxidorreductasas/química
19.
ChemMedChem ; 15(1): 105-113, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31701643

RESUMEN

The molecular targets and the modes of action behind the cytotoxicity of two structurally established N,O- or N,N-hydrazone ruthenium(II)-arene complexes were explored in human breast adenocarcinoma cells (MCF-7) and paralleled in non-cancerous and cisplatin-resistant counterparts (MCF-10A and MCF-7CR respectively). Both complexes, [Ru(hmb)(L1)Cl] (1, L1=4-((2-(2,4-dinitrophenyl)hydrazono)(phenyl)methyl)-3-methyl-1-phenyl-1H-pyrazol-5-olate) and [Ru(cym)(L2)Cl] (2, L2=1-((3-methyl-5-oxo-1-phenyl-1H-pyrazol-4(5H)-ylidene)(phenyl)methyl)-2-(pyridin-2-yl)hydrazin-1-ide), reversibly interact with moderate-to-high affinity with a number of molecular targets in cell-free assays, namely serum albumin, DNA, the 20S proteasome and hydroxymethylglutaryl-CoA reductase. Most interestingly, only 2 readily crosses the cell membrane and preserves its binding/modulatory ability toward the targets of interest upon rapid cellular internalization. The resulting action at multiple levels of the cancer cascade is likely the cause for the selective sensitization of tumour cells to p27-mediated apoptotic death, and for the ability of 2 to overcome the drug resistance problem.


Asunto(s)
Antineoplásicos/química , Complejos de Coordinación/química , Hidrazonas/química , Rutenio/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Sitios de Unión , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Permeabilidad de la Membrana Celular/efectos de los fármacos , Complejos de Coordinación/metabolismo , Complejos de Coordinación/farmacología , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , ADN/química , ADN/metabolismo , Humanos , Hidroximetilglutaril-CoA Reductasas/química , Hidroximetilglutaril-CoA Reductasas/metabolismo , Cinética , Simulación del Acoplamiento Molecular , Conformación de Ácido Nucleico , Unión Proteica
20.
Front Physiol ; 10: 1237, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31611814

RESUMEN

Guanylate cyclase-C (GC-C) is a multifunctional receptor encoded by the GUCY2C gene, representing an attractive target for therapy in several gastrointestinal diseases in humans. Little is known about this system in horses. We investigated for the first time the gene expression of guanylin, uroguanylin and GC-C receptors in different horse's gastrointestinal tracts. Tissue samples from stomach, duodenum, jejunum, ileum, head and body of cecum, left and right dorsal colon, left and right ventral colon, pelvic flexure, transverse colon, descending colon and rectum were collected from adult horses within 1 h post mortem. For each sample, total RNA was extracted from 100 mg of ground tissue, and qRT-PCR performed on GUCA2a, GUCA2b and GUCY2 transcripts on a CFX96 Touch instrument. Data analysis was carried out with Bio-Rad CFX Manager software, and genes of interest normalized relative to the abundance of the two reference genes (SDHA, HPRT). Additionally, the protein expression levels of GC-C receptor were analyzed through western blotting. A common pattern of expression throughout the gastrointestinal lumen for all three investigated transcripts was found. The expression of GUCA2a, GUCA2b and GUCY2 genes was higher in jejunum, ileum, descending colon and rectum. The levels of expression of GC-C protein confirmed these data. The findings of this study might open new scenarios for the therapeutic approach to enteric diseases of horse using selective agonists of GC-C.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...