Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39259935

RESUMEN

Tellurophene-bearing small molecules have emerged as valuable tools for localizing cellular activities in vivo using mass cytometry. To broaden the utility of tellurophenes in chemical biology, we have developed a bioorthogonal reaction to facilitate tagging of tellurophene-bearing conjugates for downstream applications. Using TePhe, a tellurophene-based phenylalanine analogue, labeled recombinant proteins were generated for reaction development. Using these proteins, we demonstrate an oxidation-controlled, strain-promoted tellurophene-alkyne cycloaddition (OSTAC) reaction. Mild oxidation of the tellurophene ring with N-chlorosuccinimide produces a reactive Te(IV) species which undergoes rapid (k > 100 M-1 s-1) cycloaddition with bicyclo[6.1.0]nonyne (BCN) yielding a benzo-fused cyclooctane. Selective labeling of TePhe-containing proteins can be achieved in complex protein mixtures and on fixed cells. OSTAC reactions can be combined with strain-promoted azide alkyne cycloaddition (SPAAC) and copper-catalyzed azide alkyne click (CuAAC) reactions. Demonstrating the versatility of this approach, we observe the expected staining patterns for 5-ethynyl-2'-deoxyuridine (DNA synthesis-CuAAC) and immunohistochemistry targets in combination with TePhe (protein synthesis-OSTAC) in fixed cells. The favorable properties of the OSTAC reaction suggest its broad applicability in chemical biology.

2.
bioRxiv ; 2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-39229125

RESUMEN

Glycans are emerging as important regulators of T cell function but remain poorly characterized across the functionally distinct populations that exist in vivo . Here, we couple single-cell analysis technologies with soluble lectins and chemical probes to interrogate glycosylation patterns on major T cell populations across multiple mouse and human tissues. Our analysis focused on terminal glycan epitopes with immunomodulatory functions, including sialoglycan ligands for Siglecs. We demonstrate that glycosylation patterns are diverse across the resting murine T cell repertoire and dynamically remodelled in response to antigen-specific stimulation. Surprisingly, we find that human T cell populations do not share the same glycoprofiles or glycan remodelling dynamics as their murine counterparts. We show that these differences can be explained by divergent regulation of glycan biosynthesis pathways between the species. These results highlight fundamental glycophysiological differences between mouse and human T cells and reveal features that are critical to consider for glycan-targeted therapies.

3.
IUBMB Life ; 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39247978

RESUMEN

The aminoacyl-tRNA synthetases (aaRS) are a large group of enzymes that implement the genetic code in all known biological systems. They attach amino acids to their cognate tRNAs, moonlight in various translational and non-translational activities beyond aminoacylation, and are linked to many genetic disorders. The aaRS have a subtle ontology characterized by structural and functional idiosyncrasies that vary from organism to organism, and protein to protein. Across the tree of life, the 22 coded amino acids are handled by 16 evolutionary families of Class I aaRS and 21 families of Class II aaRS. We introduce AARS Online, an interactive Wikipedia-like tool curated by an international consortium of field experts. This platform systematizes existing knowledge about the aaRS by showcasing a taxonomically diverse selection of aaRS sequences and structures. Through its graphical user interface, AARS Online facilitates a seamless exploration between protein sequence and structure, providing a friendly introduction to the material for non-experts and a useful resource for experts. Curated multiple sequence alignments can be extracted for downstream analyses. Accessible at www.aars.online, AARS Online is a free resource to delve into the world of the aaRS.

4.
Trends Cell Biol ; 34(9): 756-770, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38431493

RESUMEN

Alternative mRNA splicing enables the diversification of the proteome from a static genome and confers plasticity and adaptiveness on cells. Although this is often explored in development, where hard-wired programs drive the differentiation and specialization, alternative mRNA splicing also offers a way for cells to react to sudden changes in outside stimuli such as small-molecule metabolites. Fluctuations in metabolite levels and availability in particular convey crucial information to which cells react and adapt. We summarize and highlight findings surrounding the metabolic regulation of mRNA splicing. We discuss the principles underlying the biochemistry and biophysical properties of mRNA splicing, and propose how these could intersect with metabolite levels. Further, we present examples in which metabolites directly influence RNA-binding proteins and splicing factors. We also discuss the interplay between alternative mRNA splicing and metabolite-responsive signaling pathways. We hope to inspire future research to obtain a holistic picture of alternative mRNA splicing in response to metabolic cues.


Asunto(s)
ARN Mensajero , Humanos , ARN Mensajero/metabolismo , ARN Mensajero/genética , Animales , Empalme Alternativo , Empalme del ARN , Proteínas de Unión al ARN/metabolismo , Transducción de Señal
5.
Nucleic Acids Res ; 51(19): 10768-10781, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37739431

RESUMEN

Translational readthrough of UGA stop codons by selenocysteine-specific tRNA (tRNASec) enables the synthesis of selenoproteins. Seryl-tRNA synthetase (SerRS) charges tRNASec with serine, which is modified into selenocysteine and delivered to the ribosome by a designated elongation factor (eEFSec in eukaryotes). Here we found that components of the human selenocysteine incorporation machinery (SerRS, tRNASec, and eEFSec) also increased translational readthrough of non-selenocysteine genes, including VEGFA, to create C-terminally extended isoforms. SerRS recognizes target mRNAs through a stem-loop structure that resembles the variable loop of its cognate tRNAs. This function of SerRS depends on both its enzymatic activity and a vertebrate-specific domain. Through eCLIP-seq, we identified additional SerRS-interacting mRNAs as potential readthrough genes. Moreover, SerRS overexpression was sufficient to reverse premature termination caused by a pathogenic nonsense mutation. Our findings expand the repertoire of selenoprotein biosynthesis machinery and suggest an avenue for therapeutic targeting of nonsense mutations using endogenous factors.


Asunto(s)
Biosíntesis de Proteínas , Serina-ARNt Ligasa , Humanos , Codón sin Sentido , Codón de Terminación , ARN Mensajero/metabolismo , Selenocisteína/genética , Selenocisteína/metabolismo , Selenoproteínas/genética , Serina-ARNt Ligasa/genética
6.
Cell Rep ; 42(6): 112632, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37314928

RESUMEN

Various stress conditions are signaled through phosphorylation of translation initiation factor eukaryotic initiation factor 2α (eIF2α) to inhibit global translation while selectively activating transcription factor ATF4 to aid cell survival and recovery. However, this integrated stress response is acute and cannot resolve lasting stress. Here, we report that tyrosyl-tRNA synthetase (TyrRS), a member of the aminoacyl-tRNA synthetase family that responds to diverse stress conditions through cytosol-nucleus translocation to activate stress-response genes, also inhibits global translation. However, it occurs at a later stage than eIF2α/ATF4 and mammalian target of rapamycin (mTOR) responses. Excluding TyrRS from the nucleus over-activates translation and increases apoptosis in cells under prolonged oxidative stress. Nuclear TyrRS transcriptionally represses translation genes by recruiting TRIM28 and/or NuRD complex. We propose that TyrRS, possibly along with other family members, can sense a variety of stress signals through intrinsic properties of this enzyme and strategically located nuclear localization signal and integrate them by nucleus translocation to effect protective responses against chronic stress.


Asunto(s)
Tirosina-ARNt Ligasa , Tirosina-ARNt Ligasa/genética , Tirosina-ARNt Ligasa/metabolismo , Transporte de Proteínas , Fosforilación , Señales de Localización Nuclear , Estrés Oxidativo
8.
Nat Cell Biol ; 25(4): 592-603, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37059883

RESUMEN

Cells respond to perturbations such as inflammation by sensing changes in metabolite levels. Especially prominent is arginine, which has known connections to the inflammatory response. Aminoacyl-tRNA synthetases, enzymes that catalyse the first step of protein synthesis, can also mediate cell signalling. Here we show that depletion of arginine during inflammation decreased levels of nuclear-localized arginyl-tRNA synthetase (ArgRS). Surprisingly, we found that nuclear ArgRS interacts and co-localizes with serine/arginine repetitive matrix protein 2 (SRRM2), a spliceosomal and nuclear speckle protein, and that decreased levels of nuclear ArgRS correlated with changes in condensate-like nuclear trafficking of SRRM2 and splice-site usage in certain genes. These splice-site usage changes cumulated in the synthesis of different protein isoforms that altered cellular metabolism and peptide presentation to immune cells. Our findings uncover a mechanism whereby an aminoacyl-tRNA synthetase cognate to a key amino acid that is metabolically controlled during inflammation modulates the splicing machinery.


Asunto(s)
Aminoacil-ARNt Sintetasas , Arginino-ARNt Ligasa , Aminoácidos/metabolismo , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/metabolismo , Arginina/química , Arginina/genética , Arginina/metabolismo , Arginino-ARNt Ligasa/química , Arginino-ARNt Ligasa/genética , Arginino-ARNt Ligasa/metabolismo , Empalme del ARN , Proteínas de Unión al ARN/metabolismo
9.
Int J Mol Sci ; 24(8)2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37108225

RESUMEN

R-loops are three-stranded DNA/RNA hybrids that form by the annealing of the mRNA transcript to its coding template while displacing the non-coding strand. While R-loop formation regulates physiological genomic and mitochondrial transcription and DNA damage response, imbalanced R-loop formation can be a threat to the genomic integrity of the cell. As such, R-loop formation is a double-edged sword in cancer progression, and perturbed R-loop homeostasis is observed across various malignancies. Here, we discuss the interplay between R-loops and tumor suppressors and oncogenes, with a focus on BRCA1/2 and ATR. R-loop imbalances contribute to cancer propagation and the development of chemotherapy drug resistance. We explore how R-loop formation can cause cancer cell death in response to chemotherapeutics and be used to circumvent drug resistance. As R-loop formation is tightly linked to mRNA transcription, their formation is unavoidable in cancer cells and can thus be explored in novel cancer therapeutics.


Asunto(s)
Neoplasias , Estructuras R-Loop , Humanos , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteínas Portadoras/metabolismo , Proteína BRCA2/genética , ARN/metabolismo , ARN Mensajero , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Inestabilidad Genómica
10.
Wiley Interdiscip Rev RNA ; 14(5): e1789, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37042417

RESUMEN

Aminoacyl-tRNA synthetases form the protein family that controls the interpretation of the genetic code, with tRNA aminoacylation being the key chemical step during which an amino acid is assigned to a corresponding sequence of nucleic acids. In consequence, aminoacyl-tRNA synthetases have been studied in their physiological context, in disease states, and as tools for synthetic biology to enable the expansion of the genetic code. Here, we review the fundamentals of aminoacyl-tRNA synthetase biology and classification, with a focus on mammalian cytoplasmic enzymes. We compile evidence that the localization of aminoacyl-tRNA synthetases can be critical in health and disease. In addition, we discuss evidence from synthetic biology which made use of the importance of subcellular localization for efficient manipulation of the protein synthesis machinery. This article is categorized under: RNA Processing Translation > Translation Regulation RNA Processing > tRNA Processing RNA Export and Localization > RNA Localization.


Asunto(s)
Aminoacil-ARNt Sintetasas , Aminoacilación de ARN de Transferencia , Animales , ARN de Transferencia/genética , Código Genético , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/metabolismo , Mamíferos/genética , Mamíferos/metabolismo
12.
Sci Transl Med ; 15(686): eadc9249, 2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36888694

RESUMEN

Development of antimalarial compounds into clinical candidates remains costly and arduous without detailed knowledge of the target. As resistance increases and treatment options at various stages of disease are limited, it is critical to identify multistage drug targets that are readily interrogated in biochemical assays. Whole-genome sequencing of 18 parasite clones evolved using thienopyrimidine compounds with submicromolar, rapid-killing, pan-life cycle antiparasitic activity showed that all had acquired mutations in the P. falciparum cytoplasmic isoleucyl tRNA synthetase (cIRS). Engineering two of the mutations into drug-naïve parasites recapitulated the resistance phenotype, and parasites with conditional knockdowns of cIRS became hypersensitive to two thienopyrimidines. Purified recombinant P. vivax cIRS inhibition, cross-resistance, and biochemical assays indicated a noncompetitive, allosteric binding site that is distinct from that of known cIRS inhibitors mupirocin and reveromycin A. Our data show that Plasmodium cIRS is an important chemically and genetically validated target for next-generation medicines for malaria.


Asunto(s)
Antimaláricos , Malaria Falciparum , Malaria , Humanos , Antimaláricos/química , Isoleucina-ARNt Ligasa/metabolismo , Plasmodium falciparum/metabolismo , Malaria Falciparum/parasitología , Malaria/tratamiento farmacológico , Resistencia a Medicamentos
13.
Front Physiol ; 12: 818297, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35153822

RESUMEN

Aminoacyl-tRNA synthetases (aaRSs) are essential enzymes in translation by linking amino acids onto their cognate tRNAs during protein synthesis. During evolution, aaRSs develop numerous non-canonical functions that expand the roles of aaRSs in eukaryotic organisms. Although aaRSs have been implicated in viral infection, the function of aaRSs during infections with coronaviruses (CoVs) remains unclear. Here, we analyzed the data from transcriptomic and proteomic database on human cytoplasmic (cyto) and mitochondrial (mt) aaRSs across infections with three highly pathogenic human CoVs, with a particular focus on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We found an overall downregulation of aaRSs at mRNA levels, while the protein levels of some mt-aaRSs and the phosphorylation of certain aaRSs were increased in response to SARS-CoV-2 infection. Strikingly, interaction network between SARS-CoV-2 and human aaRSs displayed a strong involvement of mt-aaRSs. Further co-immunoprecipitation (co-IP) experiments confirmed the physical interaction between SARS-CoV-2 M protein and TARS2. In addition, we identified the intermediate nodes and potential pathways involved in SARS-CoV-2 infection. This study provides an unbiased, overarching perspective on the correlation between aaRSs and SARS-CoV-2. More importantly, this work identifies TARS2, HARS2, and EARS2 as potential key factors involved in COVID-19.

14.
Nucleic Acids Res ; 49(7): 3603-3616, 2021 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-33341895

RESUMEN

During mRNA translation, tRNAs are charged by aminoacyl-tRNA synthetases and subsequently used by ribosomes. A multi-enzyme aminoacyl-tRNA synthetase complex (MSC) has been proposed to increase protein synthesis efficiency by passing charged tRNAs to ribosomes. An alternative function is that the MSC repurposes specific synthetases that are released from the MSC upon cues for functions independent of translation. To explore this, we generated mammalian cells in which arginyl-tRNA synthetase and/or glutaminyl-tRNA synthetase were absent from the MSC. Protein synthesis, under a variety of stress conditions, was unchanged. Most strikingly, levels of charged tRNAArg and tRNAGln remained unchanged and no ribosome pausing was observed at codons for arginine and glutamine. Thus, increasing or regulating protein synthesis efficiency is not dependent on arginyl-tRNA synthetase and glutaminyl-tRNA synthetase in the MSC. Alternatively, and consistent with previously reported ex-translational roles requiring changes in synthetase cellular localizations, our manipulations of the MSC visibly changed localization.


Asunto(s)
Aminoacil-ARNt Sintetasas/metabolismo , Biosíntesis de Proteínas , ARN de Transferencia de Arginina/metabolismo , ARN de Transferencia de Glutamina/metabolismo , Ribosomas/metabolismo , Animales , Fibroblastos , Células HEK293 , Humanos , Ratones
15.
Genes (Basel) ; 11(11)2020 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-33266490

RESUMEN

Aminoacyl-tRNA synthetases (aaRSs) are key enzymes in the mRNA translation machinery, yet they possess numerous non-canonical functions developed during the evolution of complex organisms. The aaRSs and aaRS-interacting multi-functional proteins (AIMPs) are continually being implicated in tumorigenesis, but these connections are often limited in scope, focusing on specific aaRSs in distinct cancer subtypes. Here, we analyze publicly available genomic and transcriptomic data on human cytoplasmic and mitochondrial aaRSs across many cancer types. As high-throughput technologies have improved exponentially, large-scale projects have systematically quantified genetic alteration and expression from thousands of cancer patient samples. One such project is the Cancer Genome Atlas (TCGA), which processed over 20,000 primary cancer and matched normal samples from 33 cancer types. The wealth of knowledge provided from this undertaking has streamlined the identification of cancer drivers and suppressors. We examined aaRS expression data produced by the TCGA project and combined this with patient survival data to recognize trends in aaRSs' impact on cancer both molecularly and prognostically. We further compared these trends to an established tumor suppressor and a proto-oncogene. We observed apparent upregulation of many tRNA synthetase genes with aggressive cancer types, yet, at the individual gene level, some aaRSs resemble a tumor suppressor while others show similarities to an oncogene. This study provides an unbiased, overarching perspective on the relationship of aaRSs with cancers and identifies certain aaRS family members as promising therapeutic targets or potential leads for developing biological therapy for cancer.


Asunto(s)
Aminoacil-ARNt Sintetasas/genética , Mutación , Neoplasias/enzimología , Neoplasias/mortalidad , Aminoacil-ARNt Sintetasas/metabolismo , Bases de Datos de Proteínas , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Variación Genética , Humanos , Neoplasias/genética , Proteómica/métodos , Proto-Oncogenes Mas , Análisis de Supervivencia
16.
J Biol Chem ; 293(34): 13151-13165, 2018 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-29967063

RESUMEN

Protein activity is often regulated by altering the oligomerization state. One mechanism of multimerization involves domain swapping, wherein proteins exchange parts of their structures and thereby form long-lived dimers or multimers. Domain swapping has been specifically observed in amyloidogenic proteins, for example the cystatin superfamily of cysteine protease inhibitors. Cystatins are twin-headed inhibitors, simultaneously targeting the lysosomal cathepsins and legumain, with important roles in cancer progression and Alzheimer's disease. Although cystatin E is the most potent legumain inhibitor identified so far, nothing is known about its propensity to oligomerize. In this study, we show that conformational destabilization of cystatin E leads to the formation of a domain-swapped dimer with increased conformational stability. This dimer was active as a legumain inhibitor by forming a trimeric complex. By contrast, the binding sites toward papain-like proteases were buried within the cystatin E dimer. We also showed that the dimers could further convert to amyloid fibrils. Unexpectedly, cystatin E amyloid fibrils contained functional protein, which inhibited both legumain and papain-like enzymes. Fibril formation was further regulated by glycosylation. We speculate that cystatin amyloid fibrils might serve as a binding platform to stabilize the pH-sensitive legumain and cathepsins in the extracellular environment, contributing to their physiological and pathological functions.


Asunto(s)
Amiloide/química , Cistatina M/química , Cistatina M/metabolismo , Papaína/antagonistas & inhibidores , Multimerización de Proteína , Sitios de Unión , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Conformación Proteica , Relación Estructura-Actividad
17.
Chembiochem ; 18(6): 523-526, 2017 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-28098422

RESUMEN

Selective inhibition of the immunoproteasome is a promising approach towards the development of immunomodulatory drugs. Recently, a class of substituted thiazole compounds that combine a nonpeptidic scaffold with the absence of an electrophile was reported in a patent. Here, we investigated the mode of action of the lead compound by using a sophisticated chimeric yeast model of the human immunoproteasome for structural studies. The inhibitor adopts a unique orientation perpendicular to the ß5i substrate-binding channel. Distinct interactions between the inhibitor and the subpockets of the human immunoproteasome account for its isotype selectivity.


Asunto(s)
Factores Inmunológicos/química , Modelos Moleculares , Oligopéptidos/química , Complejo de la Endopetidasa Proteasomal/química , Inhibidores de Proteasoma/química , Humanos , Estructura Molecular , Péptidos/química , Complejo de la Endopetidasa Proteasomal/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal/metabolismo
18.
Angew Chem Int Ed Engl ; 55(42): 13330-13334, 2016 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-27709817

RESUMEN

Electrophiles are commonly used for the inhibition of proteases. Notably, inhibitors of the proteasome, a central determinant of cellular survival and a target of several FDA-approved drugs, are mainly characterized by the reactivity of their electrophilic head groups. We aimed to tune the inhibitory strength of peptidic sulfonate esters by varying the leaving groups. Indeed, proteasome inhibition correlated well with the pKa of the leaving group. The use of fluorophores as leaving groups enabled us to design probes that release a stoichiometric fluorescence signal upon reaction, thereby directly linking proteasome inactivation to the readout. This principle could be applicable to other sulfonyl fluoride based inhibitors and allows the design of sensitive probes for enzymatic studies.


Asunto(s)
Fluorescencia , Colorantes Fluorescentes/farmacología , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/farmacología , Ácidos Sulfínicos/farmacología , Colorantes Fluorescentes/química , Humanos , Estructura Molecular , Complejo de la Endopetidasa Proteasomal/química , Inhibidores de Proteasoma/química , Ácidos Sulfínicos/química
19.
Angew Chem Int Ed Engl ; 54(52): 15888-91, 2015 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-26563572

RESUMEN

Clinically applied proteasome inhibitors induce cell death by concomitant blockage of constitutive and immunoproteasomes. In contrast, selective immunoproteasome inhibition is less cytotoxic and has the potential to modulate chronic inflammation and autoimmune diseases. In this study, we rationally designed decarboxylated peptides that covalently target a non-catalytic cysteine of the immunoproteasome subunit ß5i with α-chloroacetamide-containing sidechains. The enhanced isoform specificity decreased cytotoxic effects and the compound suppressed the production of inflammatory cytokines. Structure-based optimization led to over 150-fold selectivity for subunit ß5i over ß5c. This new compound class provides a promising starting point for the development of selective immunoproteasome inhibitors as potential anti-inflammatory agents.


Asunto(s)
Inhibidores de Cisteína Proteinasa/farmacología , Cisteína/química , Complejo de la Endopetidasa Proteasomal/efectos de los fármacos , Catálisis
20.
ChemMedChem ; 10(12): 1969-73, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26471124

RESUMEN

Clinical application of proteasome inhibitors (PIs) is so far limited to peripheral blood cancers due to the pronounced cytotoxicity towards all cell types. Targeted delivery of PIs could permit the treatment of other cancers along with decreasing side effects. Herein we describe the first small-molecule proteasome inhibitor conjugate for targeted delivery, created by fusing PIs to a synthetic ligand of somatostatin receptors, which are highly expressed in a variety of tumors. X-ray crystallographic studies and in vitro IC50 measurements demonstrated that addition of the cyclopeptide octreotide as a targeting vehicle does not affect the PI's binding mode. The cytotoxicity of the conjugate against somatostatin-receptor-expressing cells was up to 11-fold higher than that of a non-targeting surrogate. We have therefore established PIs as a new payload for drug conjugates and have shown that targeted delivery thereof could be a promising approach for the broader application of this FDA-approved class of compounds.


Asunto(s)
Octreótido/química , Inhibidores de Proteasoma/química , Receptores de Somatostatina/metabolismo , Animales , Sitios de Unión , Línea Celular , Cristalografía por Rayos X , Concentración 50 Inhibidora , Cinética , Ligandos , Simulación de Dinámica Molecular , Complejo de la Endopetidasa Proteasomal/química , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Ratas , Receptores de Somatostatina/antagonistas & inhibidores , Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...