Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 61(19): e202114817, 2022 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-35014760

RESUMEN

The cyclization reactions of propargylic alcohols and propargylic amines with CO2 are important in industrial applications, but it was a great challenge that non-noble-metal catalysts catalyzed both reactions under mild conditions. Herein, the catalyst Cu2 O@ZIF-8 was prepared by encapsulating Cu2 O nanoparticles into robust ZIF-8, and it can effectively catalyze the cyclization of both propargylic alcohols and propargylic amines with CO2 into valuable α-alkylidene cyclic carbonates and oxazolidinones with turnover numbers (TONs) of 12.1 and 19.6, which can be recycled at least five times. The mechanisms were further uncovered by NMR, FTIR, 13 C isotope-labeling experiments and DFT calculations, in which Cu2 O and DBU can synergistically activate the C≡C bond and the hydroxy/amino group of substrates. Importantly, it is the first example of a noble-metal-free catalyst that can catalyze both propargylic alcohols and propargylic amines with CO2 simultaneously.

2.
Inorg Chem ; 59(20): 15111-15119, 2020 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-32997940

RESUMEN

Two structurally similar metal-organic frameworks (MOFs) [Dy2Cu4I3(IN)7(DMF)2]·DMF (1) and [Dy2Cu4I3(IN)7(DMA)2]·DMA (2) (HIN = isonicotinic acid) feathering different coordinated solvent molecules were successfully isolated by tuning the types of solvents in the reaction system. Structural tests indicate that 1 and 2 are both built from 1D Dy(III) chains and copper iodide clusters [Cu4I3], generating into three-dimensional frameworks with an open 1D channel along the a axis. 1 and 2 display extensive and excellent solvent stability. Magnetic studies of 1 and 2 indicate that they exhibit interesting solvent-dependent magnetization dynamics. Importantly, 1 and 2 can act as highly effective catalysts for the carboxylic cyclization of propargyl alcohols with carbon dioxide (CO2) under ambient operating conditions. Additionally, the substrate scope was further explored over compound 1 based on the optimal conditions, and it exhibits efficient cyclic carboxylation of various terminal propargylic alcohols with CO2. This research offers an effective approach for the solvent-guided synthesis of MOFs materials and also presents the great application value of MOFs in CO2 chemical conversion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA