RESUMEN
Beetle femur-tibial joints can bear large loads, and the joint structure plays a crucial role. Differences in living habits will lead to differences in femur-tibial joint structure, resulting in different mechanical properties. Here, we determined the structural characteristics of the femur-tibial joints of three species of beetles with different living habits. The tibia of Scarabaeidae Protaetia brevitarsis and Cetoniidae Torynorrhina fulvopilosa slide through cashew-shaped bumps on both sides of the femur in a guide rail consisting of a ring and a cone bump. The femur-tibial joint of Buprestidae Chrysodema radians is composed of a conical convex tibia and a circular concave femur. A bionic structure design was developed out based on the characteristics of the structure of the femur-tibial joints. Differences in the failure of different joint models were obtained through experiments and finite element analysis. The experimental results show that although the spherical connection model can bear low loads, it can maintain partial integrity of the structure and avoid complete failure. The cuboid connection model shows a higher load-bearing capacity, but its failure mode is irreversible deformation. As key parts of rotatable mechanisms, the bionic models have the potential for wide application in the high-load engineering field.
RESUMEN
Dung beetle leg joints exhibit a remarkable capacity to support substantial loads, which is a capability significantly influenced by their surface microstructure. The exploration of biomimetic designs inspired by the surface microstructure of these joints holds potential for the development of efficient self-locking structures. However, there is a notable absence of research focused on the surface microstructure of dung beetle leg joints. In this study, we investigated the structural characteristics of the surface microstructures present in dung beetle leg joints, identifying the presence of fish-scale-like, brush-like, and spike-like microstructures on the tibia and femur. Utilizing these surface microstructural characteristics, we designed a self-locking structure that successfully demonstrated functionality in both the rotational direction of the structure and self-locking in the reverse direction. At a temperature of 20 °C, the biomimetic closure featuring a self-locking mechanism was capable of generating a self-locking force of 18 N. The bionic intelligent joint, characterized by its unique surface microstructure, presents significant potential applications in aerospace and various engineering domains, particularly as a critical component in folding mechanisms. This research offers innovative design concepts for folding mechanisms, such as those utilized in satellite solar panels and solar panels for asteroid probes.
RESUMEN
Carbonic anhydrase (CA) enzyme-based absorption technology for CO2 capture has been intensively investigated. However, low solubility of CO2 and poor stability of CA severely limits its industrial utilization. Here, hydrolyzed polyacrylonitrile (PAN) membrane (HPAN) was first modified by polyethyleneimine (PEI) with a large number of amino groups, which has a strong affinity for CO2. Then, ZIF-8 was grown in situ on the surface of HPAN/PEI membrane by using the metal chelation of PEI and Zn2+. In this process, CA was embedded inside ZIF-8 by co-precipitation (CA@HPAN/PEI/ZIF-8). The resultant CA@HPAN/PEI/ZIF-8 exhibited high catalytic activity for CO2 capture compared with free CA, which was due to the synergistic enhancement of CO2 capture by PEI and ZIF-8 with high affinity to CO2 and enzymatic catalysis. The yield of CaCO3 by CA@HPAN/PEI/ZIF-8 in the process of one-time conversion of CO2 was 13.6-fold higher than free CA. Furthermore, the CA@HPAN/PEI/ZIF-8 showed better thermal stability, storage and reusability than free CA. Free CA retained only 18.3 % of its original activity after 18 days of storage, whereas CA@HPAN/PEI/ZIF-8 remained 48.7 % of its original activity. The total CaCO3 yield by CA@HPAN/PEI/ZIF-8 was 74.9-fold that of free CA after 8 consecutive rounds of CO2 conversion.
Asunto(s)
Dióxido de Carbono , Anhidrasas Carbónicas , Polietileneimina , Dióxido de Carbono/química , Anhidrasas Carbónicas/metabolismo , Anhidrasas Carbónicas/química , Polietileneimina/química , Estructuras Metalorgánicas/química , Membranas Artificiales , Resinas Acrílicas/química , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Reactores Biológicos , Reciclaje , ImidazolesRESUMEN
Macrostructural control of stress distribution and microstructural influence on crack propagation is one of the strategies for obtaining high mechanical properties in stag beetle upper jaws. The maximum bending fracture force of the stag beetle upper jaw is approximately 154, 000 times the weight of the upper jaw. Here, we explore the macro and micro-structural characteristics of two stag beetle upper jaws and reveal the resulting differences in mechanical properties and enhancement mechanisms. At the macroscopic level, the elliptic and triangular cross-sections of the upper jaw of the two species of stag beetles have significant effects on the formation of cracks. The crack generated by the upper jaws with a triangular section grows slowly and deflects easily. At the microscopic level, the upper jaw of the two species is a chitin cross-layered structure, but the difference between the two adjacent fiber layers at 45° and 50° leads to different deflection paths of the cracks on the exoskeleton. The mechanical properties of the upper jaw of the two species of stag beetle were significantly different due to the interaction of macro-structure and micro-structure. In addition, a series of bionic samples with different cross-section geometries and different fiber cross angles were designed, and mechanical tests were carried out according to the macro-structure and micro-structure characteristics of the stag beetle upper jaw. The effects of cross-section geometry and fiber cross angle on the mechanical properties of bionic samples are compared and analyzed. This study provides new ideas for designing and optimizing highly loaded components in engineering. STATEMENT OF SIGNIFICANCE: The upper jaw of the stag beetle is composed of a complex arrangement of chitin and protein fibers, providing both rigidity and flexibility. This structure is designed to withstand various mechanical stresses, including impacts and bending forces, encountered during its burrowing activities and interactions with its environment. The study of the upper jaw of the stag beetle can provide an efficient structural design for engineering components that are subjected to high loads. Understanding the relationship between structure and mechanical properties in the stag beetle upper jaw holds significant implications for biomimetic design and engineering.
Asunto(s)
Escarabajos , Maxilares , Animales , Escarabajos/fisiología , Maxilares/fisiología , Maxilares/anatomía & histología , Estrés Mecánico , Fenómenos BiomecánicosRESUMEN
Reductive amination by amine dehydrogenases is a green and sustainable process that produces only water as the by-product. In this study, a continuous flow process was designed utilizing a packed bed reactor filled with co-immobilized amine dehydrogenase wh84 and glucose dehydrogenase for the highly efficient biocatalytic synthesis of chiral amino alcohols. The immobilized amine dehydrogenase wh84 exhibited better thermo-, pH and solvent stability with high activity recovery. (S)-2-aminobutan-1-ol was produced in up to 99% conversion and 99% ee in the continuous flow processes, and the space-time yields were up to 124.5 g L-1 d-1. The continuous reactions were also extended to 48 h affording up to 91.8% average conversions. This study showcased the important potential to sustainable production of chiral amino alcohols in continuous flow processes.
RESUMEN
The catalytic performance of immobilized lipase is greatly influenced by functional support, which attracts growing interest for designing supports to achieve their promotive catalytic activity. Many lipases bind strongly to hydrophobic surfaces where they undergo interfacial activation. Herein, the behavioral differences of lipases with distinct lid structures on interfaces of varying hydrophobicity levels were firstly investigated by molecular simulations. It was found that a reasonable hydrophilic/hydrophobic surface could facilitate the lipase to undergo interfacial activation. Building on these findings, a novel "nest"-like superhydrophobic ZIFs (ZIFN) composed of hydrophobic ligands was prepared for the first time and used to immobilize lipase from Aspergillus oryzae (AOL@ZIFN). The AOL@ZIFN exhibited 2.0-folds higher activity than free lipase in the hydrolysis of p-Nitrophenyl palmitate (p-NPP). Especially, the modification of superhydrophobic ZIFN with an appropriate amount of hydrophilic tannic acid can significantly improve the activity of the immobilized lipase (AOL@ZIFN-TA). The AOL@ZIFN-TA exhibited 30-folds higher activity than free lipase, and still maintained 82% of its initial activity after 5 consecutive cycles, indicating good reusability. These results demonstrated that nanomaterials with rational arrangement of the hydrophilic/hydrophobic surface could facilitate the lipase to undergo interfacial activation and improve its activity, displaying the potential of the extensive application.
Asunto(s)
Enzimas Inmovilizadas , Interacciones Hidrofóbicas e Hidrofílicas , Lipasa , Propiedades de Superficie , Lipasa/química , Lipasa/metabolismo , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Aspergillus oryzae/enzimología , Simulación de Dinámica Molecular , Hidrólisis , Nanoestructuras/química , Tamaño de la PartículaRESUMEN
The multi-level structure is a strategy to enhance the mechanical properties of dung beetle leg joints. Under external loads, the microstructure facilitates energy dissipation and prevents crack extension. The macrostructure aids in transferring the load to more reliable parts. The connection established by the two hemispheres is present in the dung beetle leg joint. The micron-layered and nanoscale crystal structures further constitute the leg joint with excellent mechanical properties. The maximum compression fracture force is ≈101000 times the weight of the leg. Here, the structural design within the dung beetle leg joints and reveal the resulting mechanical response and enhancement mechanisms is determined. A series of beetle leg joints where the macrostructure and microstructure of the dung beetle leg provide mechanical strength at critical strains while avoiding catastrophic failure by transferring the load from the joint to the exoskeleton of the femur is highlighted. Nanocrystalline structures and fiber layers contribute to crack propagation of the exoskeleton. Based on this, the bionic joint with multi-level structures using resin and conducted a series of tests to verify their effectiveness is prepared. This study provides a new idea for designing and optimizing high-load joints in engineering.
Asunto(s)
Escarabajos , Animales , Escarabajos/fisiología , Fenómenos Biomecánicos , Articulaciones/fisiología , Estrés MecánicoRESUMEN
Enzyme immobilization usually make use of nanomaterials to hold up biocatalysis stability in various unamiable reaction conditions, but also lead large discount on enzyme activity. Thus, there are abundant researches focus on how to deal with the relation of enzyme molecules and supports. In this work, a new state of highly active enzymes has been established through facile and novel in situ immobilization and soft template removal method to construct enzyme contained hollow silica nanosphere (catalase@HSN) biocatalysts where enzymes in the cavity exhibit "immobilized but not rigid state". The obtained catalase@HSN was characterized by transmission electron microscopy, scanning electron microscopy and confocal laser scanning microscopy et al. Catalase@HSN exhibits excellent activity (about 80 % activity recovery rate) and stability suffers from extreme pH, temperature, and organic solvents. Moreover, the reusability and storage stability of catalase@HSN also are satisfactory. This proposed strategy provides a facile method for preparing biocatalysts under mild conditions, facilitating the applications of immobilized enzyme in the fields of real biocatalytic industry with high apparent activity and passable stability.
Asunto(s)
Nanosferas , Dióxido de Silicio , Catalasa/metabolismo , Dióxido de Silicio/química , Nanosferas/química , Enzimas Inmovilizadas/química , Biocatálisis , Estabilidad de EnzimasRESUMEN
The combination of chemo- and biocatalysts to perform one-pot synthetic route has presented great challenges for decades. Herein, glutamate oxidase (GLOX) and trimanganese tetraoxide (Mn3O4) nanocrystals were combined for the first time by one-step biomineralization to construct a mimic multi-enzyme system (GLOX@Mn3O4) for chemoenzymatic synthesis of αketoglutaric acid (αKG). Mn3O4 not only served as a support for the enzyme immobilization, but also contributed its catalytic activity to co-operate with natural enzymes for the cascade reactions. The as-synthesized chemo-enzyme catalysts with directly contacted catalytic sites of the enzyme and inorganic catalyst maximizes the substrate channeling effffects for in situ rapid decomposition of the oxidative intermediate, H2O2, during the enzymatic oxidation of sodium glutamate, thus relieving the inhibition of H2O2 accumulation for GLOX. Benefiting from the excellent stability and reusability of GLOX@Mn3O4, a nearly 100% conversion (99.7%) of l-glutamate to α-KG was achieved, over 4.7 times higher than that of the free GLOX system (21.2%). This work provides a feasibility for constructing a high-performance chemo-enzyme catalyst for cascade catalysis, especially for those reactions with toxic intermediates.
Asunto(s)
Biomimética , Ácidos Cetoglutáricos , Peróxido de Hidrógeno/química , Catálisis , GlutamatosRESUMEN
The hydrolysis of natural oils (vegetable oils and fats) by lipase has significant applications in food and medicine. However, free lipases are usually sensitive to temperature, pH and chemical reagents in aqueous solutions, which hinders their widespread industrial application. Excitingly, immobilized lipases have been widely reported to overcome these problems. Herein, inspired by lipase interface activation, a hydrophobic Zr-MOF (UiO-66-NH2-OA) with oleic acid was synthesized for the first time in an emulsion consisting of oleic acid and water, and the Aspergillus oryzae lipase (AOL) was immobilized onto the UiO-66-NH2-OA through hydrophobic interaction and electrostatic interaction to obtain immobilized lipase (AOL/UiO-66-NH2-OA). 1H NMR and FT-IR data indicated that oleic acid was conjugated with the 2-amino-1,4-benzene dicarboxylate (BDC-NH2) by amidation reaction. As a result, the Vmax and Kcat values of AOL/UiO-66-NH2-OA were 179.61 µMï¹min-1 and 8.27 s-1, which were 8.56 and 12.92 times higher than those of the free enzyme, respectively, due to the interfacial activation. After treated at 70 °C for 120 min, the immobilized lipase maintained 52 % of its original activity, but free AOL only retained 15 %. Significantly, the yield of fatty acids by the immobilized lipase reached 98.3 % and still exceeded 82 % after seven times of recycling.
Asunto(s)
Lipasa , Ácido Oléico , Lipasa/química , Hidrólisis , Espectroscopía Infrarroja por Transformada de Fourier , Enzimas Inmovilizadas/química , Aceites de Plantas/química , Ácidos Grasos Insaturados , Agua , Interacciones Hidrofóbicas e HidrofílicasRESUMEN
Hybrid nanomaterials have recently emerged as a new interface of nanobiocatalysis, serving as a host platform for enzyme immobilization. Enzyme immobilization in inorganic crystal nanoflowers and metal-organic frameworks (MOFs) has sparked the bulk of scientific interest due to their superior performances. Many breakthroughs have been achieved recently in the preparation of various types of enzyme@MOF and enzyme-hybrid nanoflower composites. However, it is unfortunate that there are few reviews in the literature related to enzyme@MOF and enzyme-hybrid nanoflower composites and their improved synthesis strategies and their applications in biotechnology. In this review, innovative synthetic strategies for enzyme@MOF composites and enzyme-hybrid nanoflower composites are discussed. Enzyme@MOF composites and enzyme-hybrid nanoflower composites are reviewed in terms of biotechnological applications and potential research directions. We are convinced that a fundamental study and application of enzyme@MOF composites and enzyme-hybrid nanoflower composites will be understood by the reader as a result of this work. The summary of different synthetic strategies for enzyme@MOF composites and enzyme-hybrid nanoflower composites and the improvement of their synthetic strategies will also benefit the readers and provide ideas and thoughts in the future research process.
RESUMEN
Nanobiocatalysts, in which enzyme molecules are integrated into/onto multifunctional materials, such as metal-organic frameworks (MOFs), have been fascinating and appeared as a new interface of nanobiocatalysis with multi-oriented applications. Among various nano-support matrices, functionalized MOFs with magnetic attributes have gained supreme interest as versatile nano-biocatalytic systems for organic bio-transformations. From the design (fabrication) to deployment (application), magnetic MOFs have manifested notable efficacy in manipulating the enzyme microenvironment for robust biocatalysis and thus assure requisite applications in several areas of enzyme engineering at large and nano-biocatalytic transformations, in particular. Magnetic MOFs-linked enzyme-based nano-biocatalytic systems offer chemo-regio- and stereo-selectivities, specificities, and resistivities under fine-tuned enzyme microenvironments. Considering the current sustainable bioprocesses demands and green chemistry needs, we reviewed synthesis chemistry and application prospects of magnetic MOFs-immobilized enzyme-based nano-biocatalytic systems for exploitability in different industrial and biotechnological sectors. More specifically, following a thorough introductory background, the first half of the review discusses various approaches to effectively developed magnetic MOFs. The second half mainly focuses on MOFs-assisted biocatalytic transformation applications, including biodegradation of phenolic compounds, removal of endocrine disrupting compounds, dye decolorization, green biosynthesis of sweeteners, biodiesel production, detection of herbicides and screening of ligands and inhibitors.
Asunto(s)
Enzimas Inmovilizadas , Estructuras Metalorgánicas , Enzimas Inmovilizadas/química , Biocatálisis , Estructuras Metalorgánicas/química , Biotecnología , Fenómenos MagnéticosRESUMEN
Baker's yeast industries generate highly polluted effluents, especially the cell free broth (i.e., vinasse) characterized by high chemical oxygen demand, nitrogen, and salts. In this work, it was found that the residual by-products (i.e., ethanol and acetic acid) and salts in the vinasse severely inhibited the cell growth, which hindered the reuse of the vinasse for the production of Saccharomyces cerevisiae. Through optimizing a suitable control strategy, the productions of ethanol and acetic acid were eliminated. Then, a nanofiltration membrane (i.e., NF5) was preferred for preliminarily and simultaneously separating and concentrating valuable molecules (i.e., invertase, food grade proteins and pigments) in the vinasse, and the main fouling mechanism was cake layer formation. Subsequently, a reverse osmosis membrane (RO) was suitable to separate and concentrate salts in the NF5 permeate, where the membrane fouling was negligible. Finally, the RO permeate was successfully reused for the production of S. cerevisiae. In addition, without calculating the benefit from the recovery of the valuable molecules, the cost of the integrated process can be decreased by 59.8% compared with the sole triple effect evaporation. Meanwhile, the volume of the fresh water used in the fermentation process can be decreased by 68.8%. Thus, it is a sustainable process for the cleaner production of baker's yeast using the integrated fermentation and membrane separation process.
Asunto(s)
Saccharomyces cerevisiae , Administración de Residuos , Ácido Acético/metabolismo , Etanol/metabolismo , Fermentación , Nitrógeno/metabolismo , Saccharomyces cerevisiae/metabolismo , Sales (Química)/metabolismo , beta-Fructofuranosidasa/metabolismoRESUMEN
The (Pt/YSZ)/YSZ sensor unit is the basic component of the NOx sensor, which can detect the emission of nitrogen oxides in exhaust fumes and optimize the fuel combustion process. In this work, the effect of sintering temperature on adhesion property and electrochemical activity of Pt/YSZ electrode was investigated. Pt/YSZ electrodes were prepared at different sintering temperatures. The microstructure of the Pt/YSZ electrodes, as well as the interface between Pt/YSZ electrode and YSZ electrolyte, were observed by SEM. Chronoamperometry, linear scan voltammetry, and AC impedance were tested by the electrochemical workstation. The results show that increasing the sintering temperature (≤1500 °C) helped to improve adhesion property and electrochemical activity of the Pt/YSZ electrode, which benefited from the formation of the porous structure of the Pt/YSZ electrode. For the (Pt/YSZ) electrode/YSZ electrolyte system, O2- in YSZ is converted into chemisorbed O2 on Pt/YSZ, which is desorbed into the gas phase in the form of molecular oxygen; this process could be the rate-controlling step of the anodic reaction. Increasing the sintering temperature (≤1500 °C) could reduce the reaction activation energy of the Pt/YSZ electrode. The activation energy reaches the minimum value (1.02 eV) when the sintering temperature is 1500 °C.
RESUMEN
The hybrid coupling of biocatalysts and chemical catalysts plays a vital role in the fields of catalysis, sensing, and medical treatment due to the integrated advantages in the high activity of natural enzymes and the excellent stability of nanozymes. Herein, a new nanozyme/natural enzyme hybrid biosensor was established for ultrasensitive glutamate detection. The MIL-88B(Fe)-NH2 material with remarkable peroxidase mimic activity and stability was used as a nanozyme and carrier for immobilizing glutamate oxidase (GLOX) through Schiff base reaction to construct a chem-enzyme cascade detector (MIL-88B(Fe)-NH2@GLOX). The resultant MIL-88B(Fe)-NH2@GLOX exhibited a wide linear range (1-100 µM), with a low detection limit of 2.5 µM for glutamate detection. Furthermore, the MIL-88B(Fe)-NH2@GLOX displayed excellent reusability and storage stability. After repeated seven cycles, MIL-88B(Fe)-NH2-GLOX (GLOX was adsorbed on MIL-88B(Fe)-NH2) lost most of its activity, whereas MIL-88B(Fe)-NH2@GLOX still retained 69% of its initial activity. Meanwhile, MIL-88B(Fe)-NH2@GLOX maintained 60% of its initial activity after storage for 90 days, while free GLOX only retained 30% of its initial activity. This strategy of integrating MOF mimics and natural enzymes for cascade catalysis makes it possible to design an efficient and stable chemo-enzyme composite catalysts, which are promising for applications in biosensing and biomimetic catalysis.
Asunto(s)
Técnicas Biosensibles , Estructuras Metalorgánicas , Biomimética , Catálisis , Ácido GlutámicoRESUMEN
Metal-organic frameworks (MOFs), with large specific surface area and tunable porosity, have gained lots of attention for immobilizing enzymes. However, the intrinsic open channels of most reported MOFs are generally smaller than 2 nm, which significantly prevents the passage of enzymes, and the diffusion efficiency of substrates and products. Here we report a new hierarchical micro-mesoporous zeolitic imidazolate framework-8 (ZIF-8) with core-shell superstructure (HZIF-8) using colloidal hydrated zinc sulfate (ZnSO4·7H2O) as a soft template for enzyme immobilization. The ZnSO4·7H2O forms an aggregation of colloids due to the self-conglobation effect in methanol, which affords a soft template for the formation of HZIF-8. Cytochrome C (Cyt C) was immobilized in interior of HZIF-8 through entrapment during the formation of HZIF-8. The resultant immobilized Cyt C (Cyt C@HZIF-8) exhibited 4-fold and 3-fold higher activity than free Cyt C and Cyt C encapsulated in conventional microporous ZIF-8 (Cyt C@ZIF-8), respectively. Meanwhile, the Km value of Cyt C@HZIF-8 significantly decreased due to the presence of mesopores compared with Cyt C@ZIF-8, indicating enhanced substrate affinity. After 7 cycles, Cyt C@HZIF-8 still maintained 70% of its initial activity whereas Cyt C@ZIF-8 only retained 10% of its initial activity. Moreover, the obtained HZIF-8 showed outstanding performance in co-immobilization of multi-enzyme for the detection of glucose.