Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Comput Biol Med ; 178: 108740, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38901184

RESUMEN

Alzheimer's disease (AD), one of the most common dementias, has about 4.6 million new cases yearly worldwide. Due to the significant amount of suspected AD patients, early screening for the disease has become particularly important. There are diversified types of AD diagnosis data, such as cognitive tests, images, and risk factors, many prior investigations have primarily concentrated on integrating only high-dimensional features and simple fusion concatenation, resulting in less-than-optimal outcomes for AD diagnosis. Therefore, We propose an enhanced multimodal AD diagnostic framework comprising a feature-aware module and an automatic model fusion strategy (AMFS). To preserve the correlation and significance features within a low-dimensional space, the feature-aware module employs a low-dimensional SHapley Additive exPlanation (SHAP) boosting feature selection as the initial step, following this analysis, diverse tiers of low-dimensional features are extracted from patients' biological data. Besides, in the high-dimensional stage, the feature-aware module integrates cross-modal attention mechanisms to capture subtle relationships among different cognitive domains, neuroimaging modalities, and risk factors. Subsequently, we integrate the aforementioned feature-aware module with graph convolutional networks (GCN) to address heterogeneous data in multimodal AD, while also possessing the capability to perceive relationships between different modalities. Lastly, our proposed AMFS autonomously learns optimal parameters for aligning two sub-models. The validation tests using two ADNI datasets show the high accuracies of 95.9% and 91.9% respectively, in AD diagnosis. The methods efficiently select features from multimodal AD data, optimizing model fusion for potential clinical assistance in diagnostics.

2.
J Alzheimers Dis ; 97(4): 1661-1672, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38306031

RESUMEN

Background: Rapidly growing healthcare demand associated with global population aging has spurred the development of new digital tools for the assessment of cognitive performance in older adults. Objective: To develop a fully automated Mini-Mental State Examination (MMSE) assessment model and validate the model's rating consistency. Methods: The Automated Assessment Model for MMSE (AAM-MMSE) was an about 10-min computerized cognitive screening tool containing the same questions as the traditional paper-based Chinese MMSE. The validity of the AAM-MMSE was assessed in term of the consistency between the AAM-MMSE rating and physician rating. Results: A total of 427 participants were recruited for this study. The average age of these participants was 60.6 years old (ranging from 19 to 104 years old). According to the intraclass correlation coefficient (ICC), the interrater reliability between physicians and the AAM-MMSE for the full MMSE scale AAM-MMSE was high [ICC (2,1)=0.952; with its 95% CI of (0.883,0.974)]. According to the weighted kappa coefficients results the interrater agreement level for audio-related items showed high, but for items "Reading and obey", "Three-stage command", and "Writing complete sentence" were slight to fair. The AAM-MMSE rating accuracy was 87%. A Bland-Altman plot showed that the bias between the two total scores was 1.48 points with the upper and lower limits of agreement equal to 6.23 points and -3.26 points. Conclusions: Our work offers a promising fully automated MMSE assessment system for cognitive screening with pretty good accuracy.


Asunto(s)
Disfunción Cognitiva , Humanos , Anciano , Anciano de 80 o más Años , Disfunción Cognitiva/diagnóstico , Disfunción Cognitiva/psicología , Reproducibilidad de los Resultados , Pruebas Neuropsicológicas , Algoritmos , Cognición
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...