Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Res Vet Sci ; 158: 203-214, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37031469

RESUMEN

Feline panleukopenia virus (FPV) can cause a viral disease and is responsible for severe leukopenia, gastroenteritis, and nervous signs with significant economic losses. Biochemically long non-coding RNAs (lncRNAs) can regulate the expression of mRNA in different ways, thereby causing the functional changes in host cells in response to viral infection. However, no attention has been paid until now to investigate the link between FPV pathogenesis and lncRNA. Here, through RNA sequencing, we performed a comprehensive analysis of lncRNA and mRNA in F81 cells after FPV-BJ04 strain infection. Consistent with previous studies, our data showed that lncRNAs have distinct features from mRNA. A total of 291 lncRNAs and 873 mRNAs were differentially expressed in F81 cells after FPV-BJ04 infection. GO and KEGG enrichment analysis showed that the differentially upregulated lncRNAs target genes were mainly involved in the positive regulation of transcription by RNA polymerase II and MAPK signaling pathway. The differentially downregulated lncRNAs target genes were mainly involved in the mRNA splicing and endocytosis. In addition, the differentially expressed immune pathway related genes that are targeted by lncRNA were also screened out to construct a lncRNA-miRNA-mRNA axes as a potential novel biomarkers in regulating the immune response of feline against FPV infection. Our results contribute to understand the basic role of lncRNA in F81 cells during FPV infection and lay the foundation for following research.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Gatos , Animales , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Transcriptoma , MicroARNs/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Riñón/metabolismo , Línea Celular
2.
Vet Microbiol ; 273: 109549, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36037621

RESUMEN

MicroRNAs (miRNAs) are vital post-transcriptional regulators that participate in host-pathogen interactions by modulating the expression of cellular factors. Previous studies have demonstrated that feline panleukopenia virus (FPV) alters miRNA expression levels within host cells. However, the relationship between FPV replication and host miRNAs remains unclear. Here, we demonstrated that FPV infection significantly altered cellular miR-92a-1-5p expression in F81 cells by upregulating the expression of specificity protein 1 (SP1). Furthermore, we observed that miR-92a-1-5p enhanced interferon (IFN-α/ß) expression by targeting the suppressors of cytokine signaling 5 (SOCS5) that negatively regulates NF-κB signaling and inhibits FPV replication in host cells. These findings revealed that miR-92a-1-5p plays a crucial role in host defense against FPV infection.


Asunto(s)
MicroARNs , Replicación Viral , Animales , Gatos , Virus de la Panleucopenia Felina/genética , Interacciones Huésped-Patógeno/genética , Interferón beta , MicroARNs/genética , MicroARNs/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Replicación Viral/genética
3.
Vaccines (Basel) ; 9(9)2021 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-34579264

RESUMEN

Porcine parvovirus (PPV) is the most important infectious agent causing infertility in pigs, which can be prevented by routine vaccination. Successful vaccination depends on the association with potent adjuvants that can enhance the immunogenicity of antigen and activate the immune system. Polysaccharide adjuvant has low toxicity and high safety, and they can enhance the humoral, cellular and mucosal immune responses. In the present study, we prepared the VP2 protein subunit vaccine against PPV (PPV/VP2/N-2-HACC) using water-soluble N-2-Hydroxypropyl trimethyl ammonium chloride chitosan (N-2-HACC) as the vaccine adjuvant, and the ability of the PPV/VP2/N-2-HACC to induce immune responses and protect sows from PPV infection was evaluated. In vivo immunization showed that the sows immunized with the PPV/VP2/N-2-HACC by intramuscular injection produced higher HI antibody levels and long-term immune protection compared with the other groups, while the subunit vaccine did not stimulate the proliferation of CD4+ and CD8+ T lymphocytes to trigger the secretion of higher levels of IL-2, IL-4, IFN-α, IFN-ß, and IFN-γ, indicating that the PPV/VP2/N-2-HACC mainly induced humoral immunity rather than cellular immunity. PPV was not detected in the viscera of the sows immunized with the PPV/VP2/N-2-HACC, and the protective efficacy was 100%. Collectively, our findings suggested that the N-2-HACC was a potential candidate adjuvant, and the PPV/VP2/N-2-HACC had immense application value for the control of PPV.

4.
Front Vet Sci ; 8: 694110, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34307532

RESUMEN

In order to evaluate the pathogenicity of Senecavirus A (SVA) to weaned piglets preliminarily, 28-day-old weaned piglets were challenged with SVA by intramuscular injection. The clinical manifestations, antibody levels, and tissue viral load of infected piglets were detected. The results indicated that the piglets challenged with SVA CH/FuJ/2017 showed drowsiness, lameness, oral blisters, diarrhea, and other clinical signs. Lesions on the hooves were observed. Red spots or plaques were initially observed on the hoof and then developed into blisters that cracked and gradually formed scab. The symptoms and signs were relieved after 8 days post-infection (dpi). The sentinel piglet, feeding together with the challenged piglets, showed similar clinical signs with the challenged piglets after 3 dpi. Monitoring of antibody levels showed that anti-SVA antibody could be detected at 5 dpi by competition enzyme-linked immunosorbent assay (cELISA) method, and neutralizing antibody could be detected after 7 dpi. Analysis of viral tissue distribution and viral load indicated that SVA could replicate in the liver, spleen, lung, kidney, and lymph node. In all, Senecavirus disease was successfully replicated by SVA CH/FuJ/2017 isolate, which verified the clinical manifestations of SVA infection in weaned piglets, and provided a foundation for further SVA pathogenesis and vaccine development.

5.
Animals (Basel) ; 11(6)2021 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-34073794

RESUMEN

We investigated the efficacy of a single bacterium strain, Bacillus subtilis (B. subtilis) YW1, on the performance, morphology, cecal microbiota, and intestinal barrier function of laying hens. A total of 216 28-week-old Hy-line Brown laying hens were divided into three dietary treatment groups, with six replicates of 12 birds each for 4 weeks. The control group (Ctr) was fed a basal diet and the treatment groups, T1 and T2, were fed a basal diet supplemented with B. subtilis at a dose rate of 5 × 108 CFU/kg and 2.5 × 109 CFU/kg, respectively. Dietary supplementation with B. subtilis did not significantly affect overall egg production in both groups, with no obvious changes in average egg weight and intestine morphology. B. subtilis administration also improved the physical barrier function of the intestine by inducing significantly greater expression levels of the tight junction protein occludin in T1 (p = 0.07) and T2 (p < 0.05). Further, supplementation with B. subtilis effectively modulated the cecal microbiota, increasing the relative level of beneficial bacteria at the genus level (e.g., Bifidobacterium p < 0.05, Lactobacillus p = 0.298, Bacillus p = 0.550) and decreasing the level of potential pathogens (e.g., Fusobacterium p < 0.05, Staphylococcus p < 0.05, Campylobacter p = 0.298). Overall, B. subtilis YW1 supplementation cannot significantly improve the egg production; however, it modulated the cecal microbiota towards a healthier pattern and promoted the mRNA expression of the tight junction protein occludin in laying hens, making B. subtilis YW1 a good probiotic candidate for application in the poultry industry, and further expanding the resources of strains of animal probiotics.

6.
Front Immunol ; 12: 616713, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33897683

RESUMEN

In order to inhibit pathogenic complications and to enhance animal and poultry growth, antibiotics have been extensively used for many years. Antibiotics applications not only affect target pathogens but also intestinal beneficially microbes, inducing long-lasting changes in intestinal microbiota associated with diseases. The application of antibiotics also has many other side effects like, intestinal barrier dysfunction, antibiotics residues in foodstuffs, nephropathy, allergy, bone marrow toxicity, mutagenicity, reproductive disorders, hepatotoxicity carcinogenicity, and antibiotic-resistant bacteria, which greatly compromise the efficacy of antibiotics. Thus, the development of new antibiotics is necessary, while the search for antibiotic alternatives continues. Probiotics are considered the ideal antibiotic substitute; in recent years, probiotic research concerning their application during pathogenic infections in humans, aquaculture, poultry, and livestock industry, with emphasis on modulating the immune system of the host, has been attracting considerable interest. Hence, the adverse effects of antibiotics and remedial effects of probiotics during infectious diseases have become central points of focus among researchers. Probiotics are live microorganisms, and when given in adequate quantities, confer good health effects to the host through different mechanisms. Among them, the regulation of host immune response during pathogenic infections is one of the most important mechanisms. A number of studies have investigated different aspects of probiotics. In this review, we mainly summarize recent discoveries and discuss two important aspects: (1) the application of probiotics during pathogenic infections; and (2) their modulatory effects on the immune response of the host during infectious and non-infectious diseases.


Asunto(s)
Enfermedades Transmisibles/etiología , Susceptibilidad a Enfermedades , Inmunomodulación , Probióticos/administración & dosificación , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Biomarcadores , Enfermedades Transmisibles/diagnóstico , Enfermedades Transmisibles/metabolismo , Enfermedades Transmisibles/terapia , Manejo de la Enfermedad , Susceptibilidad a Enfermedades/inmunología , Microbioma Gastrointestinal , Interacciones Huésped-Patógeno/inmunología , Humanos , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología
7.
Arch Virol ; 166(7): 1877-1883, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33884475

RESUMEN

Here, we report the development of an indirect enzyme-linked immunosorbent assay (ELISA) method that involves using multiepitope recombinant S protein (rSP) as the coating antigen to detect antibodies against canine coronavirus (CCoV). rSP was designed by arranging its four S fragments (91-135 aa, S1 gene; 377-434 aa, S2 gene; 647-671 aa, S3 gene; 951-971 aa, S4 gene; 207-227 aa) and two T-cell epitopes in tandem: T-E1-E2-E3-E4-T. This multiepitope antigen, which has a molecular weight of approximately 25 kDa and contains a His-tag, was recognized by a CCoV-positive serum in a Western blot assay. The optimal concentration of rSP as a coating antigen in the ELISA was 2 µg/mL, and the optimal dilution of enzyme-labeled secondary antibody was 1:10,000. The cutoff OD450 value was established at 0.2395. No reactivity was observed with antisera against canine distemper virus, canine parvovirus, or feline calicivirus, indicating that this assay is highly specific. We also tested 64 clinical serum samples using our newly established method, and the positive rate was found to be 82.8%. In conclusion, our assay was found to be highly sensitive and specific for the detection of antibodies against CCoV, and it can therefore serve as a new, efficient diagnostic method.


Asunto(s)
Anticuerpos Antivirales/inmunología , Prueba Serológica para COVID-19/métodos , Coronavirus Canino/inmunología , Ensayo de Inmunoadsorción Enzimática/métodos , Glicoproteína de la Espiga del Coronavirus/inmunología , Animales , Virus del Moquillo Canino/inmunología , Perros , Proteínas Recombinantes/inmunología , Sensibilidad y Especificidad
8.
Arch Virol ; 166(6): 1599-1605, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33755802

RESUMEN

Pigeon paramyxovirus-1 (PPMV-1) is a strain of Newcastle disease virus (NDV) that has adapted to infect pigeons and poses a constant threat to the commercial poultry industry. Early detection via rapid and sensitive methods, along with timely preventative and mitigating actions, is important for reducing the spread of PPMV-1. Here, we report the development of a TaqMan loop-mediated isothermal amplification assay (TaqMan-LAMP) for rapid and specific detection of PPMV-1 based on the F gene. This system makes use of six novel primers and a TaqMan probe that targets nine distinct regions of the F gene that are highly conserved among PPMV-1 isolates. The results showed that the limit of detection was 10 copies µL-1 for PPMV-1 cDNA and 0.1 ng for PPMV-1 RNA. The reaction was completed within 25 min and was thus faster than conventional RT-PCR. Moreover, no cross-reactions with similar viruses or with peste des petits ruminants virus (PPRV) or NDV LaSota vaccine strains were observed under the same conditions. To evaluate the applicability of the assay, the TaqMan-LAMP assay and a commercial RT-PCR assay were compared using 108 clinical samples, and the concordance rate between two methods was found to be 96.3%. The newly developed PPMV-1 TaqMan-LAMP assay can therefore be used for simple, efficient, rapid, specific, and sensitive diagnosis of PPMV-1 infections.


Asunto(s)
Técnicas de Diagnóstico Molecular/veterinaria , Virus de la Enfermedad de Newcastle/genética , Virus de la Enfermedad de Newcastle/aislamiento & purificación , Técnicas de Amplificación de Ácido Nucleico/veterinaria , Animales , Columbidae , Heces/virología , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , ARN Viral , Sensibilidad y Especificidad , Factores de Tiempo
9.
BMC Vet Res ; 17(1): 36, 2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33461549

RESUMEN

BACKGROUND: Vesicular stomatitis (VS) is an acute, highly contagious and economically important zoonotic disease caused by the vesicular stomatitis virus (VSV). There is a need for effective and safe stable recombinant vaccine for the control of the disease. The human type 5 replication-defective adenovirus expression vector is a good way to construct recombinant vaccines. RESULTS: Three recombinant adenoviruses (rAd) were successfully constructed that expressed the VSV Indiana serotype glycoprotein (VSV-IN-G), VSV New Jersey serotype glycoprotein (VSV-NJ-G), and the G fusion protein (both serotypes of G [VSV-IN-G-NJ-G]) with potentiality to induce protective immunity. G proteins were successfully expressed with good immunogenicity. The rAds could induce the production of VSV antibodies in mice, and VSV neutralizing antibodies in goats, respectively. The neutralizing antibody titers could reach 1:32 in mice and 1:64 in goats. The rAds induced strong lymphocyte proliferation in mice and goats, which was significantly higher compared to the negative control groups. CONCLUSIONS: The three rAds constructed in the study expressed VSV-G proteins and induced both humoral and cellular immune responses in mice and goats. These results lay the foundation for further studies on the use of rAds in vaccines expressing VSV-G.


Asunto(s)
Glicoproteínas de Membrana/inmunología , Estomatitis Vesicular/prevención & control , Virus de la Estomatitis Vesicular Indiana/inmunología , Virus de la Estomatitis Vesicular New Jersey/inmunología , Proteínas del Envoltorio Viral/inmunología , Adenoviridae , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Femenino , Enfermedades de las Cabras/inmunología , Enfermedades de las Cabras/prevención & control , Enfermedades de las Cabras/virología , Cabras , Inmunidad Celular , Inmunidad Humoral , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ratones Endogámicos BALB C , Vacunas Sintéticas/inmunología , Estomatitis Vesicular/inmunología , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo , Vacunas Virales/inmunología
10.
Transbound Emerg Dis ; 68(3): 1097-1110, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-32799433

RESUMEN

COVID-19 is a highly contagious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It has rapidly spread to 216 countries and territories since first outbreak in December of 2019, posing a substantial economic losses and extraordinary threats to the public health worldwide. Although bats have been suggested as the natural host of SARS-CoV-2, transmission chains of this virus, role of animals during cross-species transmission, and future concerns remain unclear. Diverse animal coronaviruses have extensively been studied since the discovery of avian coronavirus in 1930s. The current article comprehensively reviews and discusses the current understanding about animal coronaviruses and SARS-CoV-2 for their emergence, transmission, zoonotic potential, alteration of tissue/host tropism, evolution, status of vaccines and surveillance. This study aims at providing guidance for control of COVID-19 and preventative strategies for possible future outbreaks of zoonotic coronavirus via cross-species transmission.


Asunto(s)
COVID-19/virología , Infecciones por Coronaviridae/veterinaria , Coronavirus/clasificación , SARS-CoV-2/genética , Animales , Infecciones por Coronaviridae/virología , Humanos
11.
Arch Virol ; 166(1): 91-100, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33074409

RESUMEN

Pseudorabies virus (PRV), the causative agent of Aujeszky's disease, has gained increased attention in China in recent years as a result of a recent outbreak of pseudorabies. The causative agent has a wide spectrum of hosts, including pigs, cattle, sheep, dogs, cats, bats, bears, and even some avian species. Although dog-related cases of pseudorabies have been reported regularly, many cases are overlooked, and few PRV strains are isolated because death occurs rapidly after PRV infection and veterinarians often do not test for PRV in dogs. Here, we performed a retrospective detection of PRV in dogs from July 2017 to December 2018. We found that PRV (including gE-deleted strains, classical strains, and variant strains) is prevalent in dogs regardless of season and region and that the epidemic PRV strains in dogs share high sequence similarity with gC and gE genes of swine epidemic strains and commercial vaccine strains. Collectively, our findings underscore the importance of PRV surveillance in dogs, which is beneficial for understanding the epidemiology of PRV in dogs and assists in efforts aimed at effectively controlling this disease.


Asunto(s)
Herpesvirus Suido 1/genética , Seudorrabia/virología , Animales , China , Brotes de Enfermedades , Perros , Genes Virales/genética , Genómica/métodos , Filogenia , Estudios Retrospectivos
12.
J Vet Diagn Invest ; 33(1): 104-107, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33350347

RESUMEN

Nanoparticle-assisted PCR (nanoPCR) is a novel method for the simple, rapid, and specific detection of viruses. We developed a nanoPCR method to detect and differentiate canine coronavirus I (CCoV I) and II (CCoV II). Primer pairs were designed against the M gene conserved region of CCoV I and CCoV II, producing specific fragments of 239 bp (CCoV I) and 105 bp (CCoV II). We optimized the annealing temperature and primer concentrations for the CCoV nanoPCR assay and assessed its sensitivity and specificity. Under optimized nanoPCR reaction conditions, the detection limits were 6.47 × 101 copies/µL for CCoV I and 6.91 × 102 copies/µL for CCoV II. No fragments were amplified using other canine viruses as templates. The sensitivity of the nanoPCR assay was 100-fold higher than that of a conventional RT-PCR assay. Among 60 clinical samples collected from Beijing, China, the assay detected 12% positive for CCoV I and 48% positive for CCoV II. Our nanoPCR method is an effective method to rapidly detect CCoV I and CCoV II alone, or as a mixed infection, in dogs.


Asunto(s)
Infecciones por Coronavirus/veterinaria , Coronavirus Canino/genética , Enfermedades de los Perros/virología , Nanopartículas , Reacción en Cadena de la Polimerasa/veterinaria , Animales , Coinfección/veterinaria , Coinfección/virología , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/virología , Coronavirus Canino/clasificación , Enfermedades de los Perros/diagnóstico , Perros , Reacción en Cadena de la Polimerasa/métodos
13.
Vet Microbiol ; 251: 108912, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33160195

RESUMEN

Pseudorabies virus (PRV) is a zoonotic agent with a wide host range, causing significant economic losses in animal husbandry and potential public health risk globally. The causative agent has recently gained attention due to the inter-species transmission among different species of animals, even human beings. Although PRV's prevalence is found in many species of animals, regardless of whether the strain involved is a vaccine, classical or variant, few lines of evidence for the viral transmission route are available. Here, we reported that viral contamination is associated with the inter-species transmission of PRV. We found that PRV contamination was widely distributed in the environment of pig farms, that viral distribution in the environment is associated with the implementation of biosecurity measures, and that PRV could transmit from pigs to dogs through virally contaminated fomites. Collectively, our findings provide a basis for understanding the ecology and transmission route of PRV and underscore the importance of implementing biosecurity measures to control this disease.


Asunto(s)
Granjas/estadística & datos numéricos , Fómites/virología , Herpesvirus Suido 1/fisiología , Seudorrabia/transmisión , Enfermedades de los Porcinos/transmisión , Animales , ADN Viral/genética , Enfermedades de los Perros/etiología , Enfermedades de los Perros/virología , Perros , Microbiología Ambiental , Humanos , Porcinos , Enfermedades de los Porcinos/virología , Esparcimiento de Virus
14.
Cell Rep ; 32(7): 108044, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32814047

RESUMEN

Type I interferon (IFN) plays an essential role in the host innate immune responses. Several ubiquitin-conjugating enzyme (E2) family members were reported to regulate type I IFN production and host antiviral immune responses. However, the molecular mechanisms are still not fully understood. Here, we report that UBE2S acts as a negative regulator in the type I IFN signaling pathway. Ectopic expression of UBE2S inhibits host antiviral immune responses and enhances viral replications, whereas deficiency of UBE2S enhances host antiviral immune responses and suppresses viral replications both in vitro and in vivo. Inhibition of type І IFN production by UBE2S is independent on its E2 and E3 enzymic activity. Mechanistically, UBE2S interacts with TBK1 and recruits ubiquitin-specific protease 15 (USP15) to remove Lys63 (K63)-linked polyubiquitin chains of TBK1. Our findings reveal a role of the UBE2S-USP15-TBK1 axis in the regulation of host antiviral innate immune responses.


Asunto(s)
Interferón Tipo I/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/inmunología , Enzimas Ubiquitina-Conjugadoras/inmunología , Replicación Viral/inmunología , Animales , Bovinos , Células HEK293 , Humanos , Interferón Tipo I/biosíntesis , Interferón Tipo I/inmunología , Ratones , Ratones Noqueados , Ratones Transgénicos , Ubiquitinación
15.
Vet Microbiol ; 245: 108691, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32456817

RESUMEN

Feline panleukopenia is an acute, highly contagious, and fatal infectious disease caused by feline panleukopenia virus (FPV) and has led to severe consequences on pets, economically important animals, and the wildlife industry. MicroRNAs (miRNAs) play significant roles in the host-pathogen interaction by modulating cellular factors expression which are essential for viral replication or host innate immune response to infection. However, the role of host miRNA response in FPV infection remains to be discovered. In this study, we screened nine host miRNAs associated with FPV infection that were previously implicated in innate immunity or antiviral functions. We found that miR-1343-5p overexpression strongly promoted FPV-BJ04 genomic DNA. Subsequently, the expression of host miR-1343-5p was upregulated by FPV-BJ04 infection in vitro and in vivo. In addition, we demonstrated that miR-1343-5p was a negative regulator of the IFN-I signaling pathway, thereby promoting FPV infection. Bioinformatic analysis combined with molecular biological assay indicated that interleukin-1 receptor-associated kinase 1 (IRAK1) is a putative target of miR-1343-5p. Collectively, our findings emphasize the importance of miR-1343-5p in host defense against FPV, thus, enhancing our understanding of its pathogenic mechanism.


Asunto(s)
Virus de la Panleucopenia Felina/inmunología , Interacciones Huésped-Patógeno , Interferón Tipo I/inmunología , Quinasas Asociadas a Receptores de Interleucina-1/genética , MicroARNs/inmunología , Replicación Viral/inmunología , Animales , Gatos , Virus de la Panleucopenia Felina/fisiología , Inmunidad Innata , Quinasas Asociadas a Receptores de Interleucina-1/inmunología , Transducción de Señal , Regulación hacia Arriba
16.
Immunol Lett ; 223: 26-32, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32333964

RESUMEN

Porcine parvovirus (PPV) is one of the most common and important virus causes of infectious infertility in swine throughout the world. Inactivated PPV vaccine is broadly used, however, there is no appropriate immunomodulatory adjuvant for enhancing present vaccines and developing new ones. Therefore, in this study, the water-soluble N-2-Hydroxypropyl trimethyl ammonium chloride chitosan (N-2-HACC) was synthesized, the adjuvant potential of chitosan derivative was evaluated in inactivated PPV vaccine. Twenty adult healthy sows were assigned to four groups and vaccinated with synthesized PPV/N-2-HACC, commercial inactivated vaccine, N-2-HACC adjuvant and PBS. After insemination, all sows were challenged with the homologous PPV-H strain. In vivo immunization showed that sows immunized with the PPV/N-2-HACC induced more long-lasting HI antibodies and strong immune responses. Importantly, immunization of PPV/N-2-HACC significantly protected sows from homologous PPV-H strain infection. However, immunization of PPV/N-2-HACC didn't change the level of IL-2, IL-4 and IFN-γ and the production of CD4+, CD8 + T lymphocyte. The results indicated that PPV/N-2-HACC protect PPV infection mainly through enhancing the humoral immunity rather than cellular immunity. In addition, the mummified fetuses were observed from the control groups, but neither of the two vaccine groups. In conclusion, these results suggest that N-2-HACC can be exploited as an effective adjuvant for vaccine development, and the PPV/N-2-HACC are potent immunization candidates against PPV infection.


Asunto(s)
Quitosano/análogos & derivados , Retardo del Crecimiento Fetal/inmunología , Infecciones por Parvoviridae/inmunología , Parvovirus Porcino/fisiología , Complicaciones Infecciosas del Embarazo/inmunología , Vacunas de Productos Inactivados/inmunología , Adyuvantes Inmunológicos , Animales , Anticuerpos Antivirales/sangre , Quitosano/inmunología , Femenino , Inmunidad Humoral , Inmunogenicidad Vacunal , Embarazo , Solubilidad , Porcinos , Vacunación , Agua
17.
Vet Res ; 51(1): 41, 2020 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-32160917

RESUMEN

Eimeria tenella has emerged as valuable model organism for studying the biology and immunology of protozoan parasites with the establishment of the reverse genetic manipulation platform. In this report, we described the application of CRISPR (clustered regularly interspaced short palindromic repeat)/Cas9 (endonuclease) system for efficient genetic editing in E. tenella, and showed that the CRISPR/Cas9 system mediates site-specific double-strand DNA breaks with a single guide RNA. Using this system, we successfully tagged the endogenous microneme protein 2 (EtMic2) by inserting the red fluorescent protein into the C-terminal of EtMic2. Our results extended the utility of the CRISPR/Cas9-mediated genetic modification system to E. tenella, and opened a new avenue for targeted investigation of gene functions in apicomplexan parasites.


Asunto(s)
Sistemas CRISPR-Cas , Eimeria tenella/genética , Edición Génica/veterinaria , Genes Protozoarios
18.
PLoS One ; 15(1): e0227705, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31945103

RESUMEN

Protoparvoviruses, widespread among cats and wild animals, are responsible for leukopenia. Feline panleukopenia virus (FPLV) in domestic cats is genetically diverse and some strains may differ from those used for vaccination. The presence of FPLV in two domestic cats from Hebei Province in China was identified by polymerase chain reaction. Samples from these animals were used to isolate FPLV strains in CRFK cells for genome sequencing. Phylogenetic analysis was performed to compare our isolates with available sequences of FPLV, mink parvovirus (MEV) and canine parvovirus (CPV). The isolated strains were closely related to strains of FPLV/MEV isolated in the 1960s. Our analysis also revealed that the evolutionary history of FPLV and MEV is characterized by local adaptations in the Vp2 gene. Thus, it is likely that new FPLV strains are emerging to evade the anti-FPLV immune response.


Asunto(s)
Antígenos Virales/inmunología , Gatos/virología , Virus de la Panleucopenia Felina/genética , Panleucopenia Felina/virología , Genes Virales/genética , Secuencia de Aminoácidos/genética , Animales , Antígenos Virales/genética , Proteínas de la Cápside/genética , Proteínas de la Cápside/inmunología , Línea Celular , China , Análisis Mutacional de ADN , ADN Viral/genética , ADN Viral/aislamiento & purificación , Perros/virología , Evolución Molecular , Heces/virología , Panleucopenia Felina/inmunología , Virus de la Panleucopenia Felina/inmunología , Virus de la Panleucopenia Felina/patogenicidad , Visón/virología , Mutación , Filogenia
19.
Vaccine ; 38(4): 933-941, 2020 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-31708180

RESUMEN

Duck Tembusu virus (TMUV) is an emerging pathogenic flavivirus that causes severe egg-drop and fatal encephalitis in domestic ducks and geese. Although a live-attenuated virus vaccine is effective for disease control, the stability of the attenuation has not been clearly evaluated due to a poor understanding of the attenuation mechanism. Here, a virulent duck TMUV isolate was successively passaged in BHK-21 cells, leading to an approximately 100-fold increase of virus production in cell culture and a complete attenuation of virulence for ducks. The passaged virus induced high titers of TMUV-specific antibody and provided efficient protection against a virulent TMUV challenge after a single-dose vaccination. One hundred and two, and eighteen single-nucleotide polymorphisms (SNPs) at a frequency of >1% were respectively identified in the attenuated virus population and the original isolate by deep sequencing. The increased SNPs numbers suggested that the accumulated variants of virus population may have conferred the phenotypic changes. We cloned and characterized a dominant variant exhibiting similar fitness to the mixed population, and 23 amino acid substitutions were identified across the viral open reading frame. Using reverse genetics, two chimeric viruses were generated by introducing the mutated E or NS5 gene into the backbone of virulent TMUV. We found that mutations in the E gene conferred a fitness advantage in BHK-21 cells and decreased the virus pathogenicity, whereas NS5 mutations reduced the virus infectivity in ducklings without altering the in vitro fitness. In conclusion, increased mutations in a virulent TMUV strain did substantially reduce the virus virulence, and mutations in multiple genes co-contribute to TMUV attenuation.


Asunto(s)
Infecciones por Flavivirus/prevención & control , Flavivirus/inmunología , Enfermedades de las Aves de Corral/prevención & control , Vacunas Virales/administración & dosificación , Sustitución de Aminoácidos , Animales , Línea Celular , Cricetinae , Patos , Femenino , Infecciones por Flavivirus/inmunología , Infecciones por Flavivirus/veterinaria , Variación Genética , Enfermedades de las Aves de Corral/inmunología , Enfermedades de las Aves de Corral/virología , Vacunación , Vacunas Atenuadas/inmunología , Vacunas Virales/inmunología
20.
BMC Genomics ; 20(1): 774, 2019 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-31651237

RESUMEN

BACKGROUND: Bovine viral diarrhoea virus (BVDV) is the member of the genus Pestivirus within the Flaviviridae family and responsible for severe economic losses in the cattle industry. BVDV can employ 'infect-and-persist' strategy and 'hit-and-run' strategy to remain associated with hosts and thus contributes to BVDV circulation in cattle herds. BVDV have also evolved various strategies to evade the innate immunity of host. To further understand the mechanisms by which BVDV overcomes the host cell innate immune response and provide more clues for further understanding the BVDV-host interaction, in this descriptive study, we conducted a investigation of differentially expressed genes (DEGs) of the host during BVDV infection by RNA-Seq analysis. RESULTS: Our analysis identified 1297, 1732, 3072, and 1877 DEGs in the comparison groups mock vs. MDBK cells infected with BVDV post 2 h (MBV2h), mock vs. MBV6h, mock vs. MBV12h, and mock vs. MBV24h, respectively. The reproducibility and repeatability of the results were validated by RT-qPCR. Enrichment analyses of GO annotations and KEGG pathways revealed the host DEGs that are potentially induced by BVDV infection and may participate in BVDV-host interactions. Protein-protein interaction (PPI) network analyses identified the potential interactions among the DEGs. Our findings suggested that BVDV infection induced the upregulation of genes involved in lipid metabolism. The expression of genes that have antiviral roles, including ISG15, Mx1, OSA1Y, were found to be downregulated and are thus potentially associated with the inhibition of host innate immune system during BVDV infection. The expression levels of F3, C1R, KNG1, CLU, C3, FB, SERPINA5, SERPINE1, C1S, F2RL2, and C2, which belong to the complement and coagulation signalling cascades, were downregulated during BVDV infection, which suggested that the complement system might play a crucial role during BVDV infection. CONCLUSION: In this descriptive study, our findings revealed the changes in the host transcriptome expression profile during BVDV infection and suggested that BVDV-infection induced altering the host's metabolic network, the inhibition of the expression of antiviral proteins and genes within the complement system might be contributed to BVDV proliferation. The above findings provided unique insights for further studies on the mechanisms underlying BVDV-host interactions.


Asunto(s)
Virus de la Diarrea Viral Bovina/genética , Perfilación de la Expresión Génica , RNA-Seq , Animales , Bovinos , Anotación de Secuencia Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA