Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 15(47): 54458-54465, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-37972319

RESUMEN

Organic amine (R-NH2) reagents as dominant chemical sorbents for CO2 capture in industrial processes suffer from high energy compensation for regeneration. Herein, we, for the first time, report the finding of Co(III) coordinating with NH3 molecules regulating the interaction between NH3 and CO2 to electrostatic interactions instead of a chemical reaction and achieve CO2 capture under near-ambient conditions. NH3 coordinating with Co(III) significantly reduces its alkalinity and reactivity with CO2 owing to its lone-pair electron donation during coordination. Under a simple protocol, CO2 induces the crystallization of CO2@[Co(NH3)6][HSO4][SO4] clathrate into a hydrogen-bonded granatohedron cage from a cobaltic hexammine sulfate aqueous solution under a CO2 pressure of 56 and 142 kPa at 275 and 298 K, respectively, with a CO2 uptake weight content of 11.7%. We reveal that CO2 interacts with cobaltous hexammine via supramolecular interactions rather than chemical bonding. The clathrate spontaneously separates from the solution as single crystals and readily releases CO2 under ambient conditions in water for cyclic utilization without further treatment. In such a rapid supramolecular capture process, molecular recognition ensures exclusive CO2 selectivity, and soluble clathrate enables the spontaneous CO2 release at a low energy penalty, exhibiting excellent practical potential in carbon capture.

2.
Artículo en Inglés | MEDLINE | ID: mdl-36315245

RESUMEN

Membranes composed of two-dimensional (2D) materials suffer from low stability and structural swelling and are usually restricted to applications in aqueous systems. Among various 2D materials, graphitic phase carbon nitride (GCN, g-C3N4) has shown great application potential owing to its structural tunability. Herein, we develop a coordination-assisted strategy to regulate the GCN layer spacing and chemical environment via copper ion (Cu2+) coordination-assisted intercalation of enantiopure (1S,2S)-(-)-1,2-diphenyl-1,2-ethanediamine (DPE) between GCN nanosheets. The obtained GCN-Cu-DPE membrane is continuous and intact, free of cracks and pinholes, stable under acidic and alkaline conditions, and exhibits water permeability above 215 L m-2 h-1 bar-1 and a high rejection rate to dye molecules. The membrane is amphiphilicity and thus allows both polar solvent (water) and nonpolar solvent (hexane) to freely pass through. Remarkably, the permeation rate is proportional to the viscosity of the solvent. Benefiting from the chiral space between nanosheets, the GCN-Cu-DPE membrane shows selective permeation of aspartic acid racemate in aqueous systems and limonene racemate in the organic phase. Our work demonstrates a general and promising strategy for chiral membrane fabrication toward high-value-added chiral separation, especially in the pharmaceutical industry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA