Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Colloids Surf B Biointerfaces ; 236: 113772, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38394858

RESUMEN

Peptides are recognized as highly effective and safe bioactive ingredients. However, t their practical application is limited and hampered by harsh conditions for practical drug delivery. Hence, a novel peptide nanocarrier of copper peptide (GHK-Cu) encapsulation developed by liposome technology combined with the classical Chinese concept of rigidity and flexibility. Different polyols were selected as modification ligands for phospholipid bilayers to construct a nano drug-carrying system with high loading rate, good stability and biocompatibility. In vitro, this complex not only significantly retarded the release ability of copper peptides, but also enabled copper peptides to be effectively resistant to enzymatic degradation. Furthermore, cellular experiments showed that this system mainly regulates Nrf2, SIRT1, and PEG2/COX-2-related signaling pathways, thus effectively counteracting cellular inflammation, senescence, and apoptosis from oxidative damage. Interestingly, a green, non-toxic, efficient and convenient antioxidant system was developed for the prevention and deceleration of skin aging.


Asunto(s)
Antioxidantes , Cobre , Antioxidantes/farmacología , Piel , Péptidos/farmacología , Antiinflamatorios/farmacología
2.
Front Plant Sci ; 10: 652, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31178878

RESUMEN

Silicon (Si) application can significantly enhance rice resistance against herbivorous insects. However, the underlying mechanism is elusive. In this study, silicon transporter mutant OsLsi1 and corresponding wild-type rice (WT) were treated with and without Si to determine Si effects on rice resistance to leaffolder (LF), Cnaphalocrocis medinalis (Guenée) (Lepidoptera: Pyralidae). Si application on WT plants significantly promoted rice plant growth, upregulated expression level of OsLsi1 and increased Si accumulation in the leaves and roots, as well as effectively reduced LF weight gain, while it showed only marginal or no effect on the mutant plants. Furthermore, upon LF infestation, transcript levels of OsLOX, OsAOS2, OsCOI1a, OsCOI1b, and OsBBPI, and activity of catalase, superoxide dismutase, peroxidase, and polyphenol oxidase were significantly higher in Si-treated than untreated WT plants. However, OsLsi1 mutant plants displayed higher susceptibility to LF, and minimal response of defense-related enzymes and jasmonate dependent genes to Si application. These results suggest that induced defense plays a vital role in Si-enhanced resistance and deficiency in silicon transporter Lsi1 compromises inducibility of anti-herbivore defense in rice plants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...