Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cardiol Young ; : 1-8, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38329072

RESUMEN

BACKGROUND: Persistent pulmonary hypertension of the newborn is a life-threatening condition that affects about 1-2 per 1,000 live births worldwide. Bosentan is an oral dual endothelin receptor antagonist that may have a beneficial effect on persistent pulmonary hypertension of the newborn by reducing pulmonary vascular resistance and improving oxygenation. However, its role in persistent pulmonary hypertension of the newborn remains unclear. OBJECTIVES: To systematically evaluate the efficacy and safety of bosentan as an adjuvant therapy for persistent pulmonary hypertension of the newborn in newborns. METHODS: We searched six English and two Chinese databases from their inception to 1 January 2023 following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. We included randomised controlled trials and retrospective studies that compared bosentan with placebo or other drugs for persistent pulmonary hypertension of the newborn in newborns. We performed a meta-analysis using random-effects models and assessed the risk of bias and heterogeneity in the included studies. RESULTS: We included 10 studies with a total of 550 participants. Bosentan significantly reduced the treatment failure rate (relative risk = 0.25, P < 0.001), pulmonary artery pressure (mean difference = -11.79, P < 0.001), and length of hospital stay (mean difference = -1.04, P = 0.003), and increased the partial pressure of oxygen (mean difference = 10.02, P < 0.001) and blood oxygen saturation (SpO2) (mean difference = 8.24, P < 0.001) compared with a placebo or other drugs. The occurrence of adverse reactions was not significantly different between bosentan and a placebo or other drugs. CONCLUSIONS: Bosentan is effective in the treatment of persistent pulmonary hypertension of the newborn but adverse reactions such as abnormal liver function should be observed when using it.

2.
Environ Technol ; : 1-13, 2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37043616

RESUMEN

A series of cerium-based high-entropy oxide catalysts (the ratio of CeO2 and HEO is 1:1) was prepared by a solid-state reaction method, which exploit their unique structural and performance advantages. The Ce-HEO-T samples can achieve 100% toluene conversion rate above 328°C when they were used as catalysts directly. Subsequently, the Ce-HEO-500 exhibited the lowest temperature for toluene oxidation was used as a support to deposit different amounts of Au for a further performance improvement. Among all of prepared samples, Au/Ce-HEO-500 with a moderate content of Au (0.5 wt%) exhibited the lowest temperature for complete combustion of toluene (260°C), which decreased nearly 70°C compared with Ce-HEO-500 support. Moreover, it also showed excellent stability for 60 h with 98% toluene conversion rate. Most importantly, under the condition of 5 vol.% H2O vapour, the toluene conversion rate remained unchanged and even increased slightly compared with that in dry air, exhibiting excellent water resistance. Combined with the characterizations of XRD, SEM, TEM, BET, Raman, H2-TPR and XPS, it was found that the high dispersion of active Au NPs, the special high-entropy structure and the synergistic effect between Au and Ce, Co, Cu are the key factors when improving the catalytic performance in the Au/Ce-HEO-500 catalyst.

3.
Small ; 19(9): e2206258, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36538746

RESUMEN

In view of high-performance, multifunctional, and low-carbon development of infrastructures, there is a growing demand for smart engineering materials, making infrastructures intelligent. This paper reports a new-generation self-sensing cementitious composite (SSCC) incorporated with a hierarchically structured carbon fiber (CF)-carbon nanotube (CNT) composite filler (CF-CNT), which is in situ synthesized by directly growing CNT on CF. Various important factors including catalyst, temperature, and gas composition are considered to investigate their kinetic and thermodynamic influence on CF-CNT synthesis. The reciprocal architecture of CF-CNT not only alleviates the CNT aggregation, but also significantly improves the interfacial bonding between CF-CNT and matrix. Due to the synergic and spatially morphological effects of CF-CNT, that is, the formation of widely distributed multiscale reinforcement networks, SSCCs with CF-CNTs exhibit high mechanical properties and electrical conductivity as well as excellent self-sensing performances, particularly enhanced sensing repeatability. Moreover, the SSCCs with CF-CNTs are integrated into a full-scale maglev girder to devise a smart system for crack development monitoring. The system demonstrates high sensitivity and fidelity to capture the initiation of cracks/damage, as well as progressive and sudden damage events until the complete failure of the maglev girder, indicating its considerable potential for structural health monitoring of infrastructures.

4.
RSC Adv ; 12(40): 25898-25905, 2022 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-36199615

RESUMEN

A series of well-dispersed CeMnO x hollow nanospheres with uniform diameter and thickness were synthesized by a novel approach combining the template method and interfacial reaction. A SiO2 template was used as a hard template for preparation of SiO2@CeO2 nanospheres by solvothermal reaction. SiO2@CeMnO x could be formed after KMnO4 was reacted with SiO2@CeO2 by interfacial reaction between MnO4 - and Ce3+. Among all the prepared catalysts, CeMnO x -3 with a moderate content of Mn (15 wt%) exhibited the lowest temperature for complete combustion of toluene (280 °C). Moreover, it showed high stability for 36 h with toluene conversion above 97.7% and good water tolerance with 5 vol% H2O. With characterization, we found that the reaction between Ce and Mn in the Ce-Mn binary oxides gave rise to increased Ce3+ and oxygen vacancies, which led to the formation of enhanced reducibility and more surface-absorbed oxygens (O2 2-, O2- and O-), and improved the catalytic performance further.

5.
J Am Chem Soc ; 143(37): 15462-15470, 2021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34498845

RESUMEN

Biomass pretreatment methods are commonly used to isolate carbohydrates from biomass, but they often lead to modification, degradation, and/or low yields of lignin. Catalytic fractionation approaches provide a possible solution to these challenges by separating the polymeric sugar and lignin fractions in the presence of a catalyst that promotes cleavage of the lignin into aromatic monomers. Here, we demonstrate an oxidative fractionation method conducted in the presence of a heterogeneous non-precious-metal Co-N-C catalyst and O2 in acetone as the solvent. The process affords a 15 wt% yield of phenolic products bearing aldehydes (vanillin, syringaldehyde) and carboxylic acids (p-hydroxybenzoic acid, vanillic acid, syringic acid), complementing the alkylated phenols obtained from existing reductive catalytic fractionation methods. The oxygenated aromatics derived from this process have appealing features for use in polymer synthesis and/or biological funneling to value-added products, and the non-alkaline conditions associated with this process support preservation of the cellulose, which remains insoluble at reaction conditions and is recovered as a solid.


Asunto(s)
Celulosa/química , Fraccionamiento Químico/métodos , Lignina/química , Catálisis , Concentración de Iones de Hidrógeno , Oxidación-Reducción , Populus/química , Madera/química
6.
Arch Virol ; 166(9): 2521-2527, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34240278

RESUMEN

Feline calicivirus (FCV) is a contagious cat pathogen that causes oral ulceration and/or upper respiratory disease. In this study, we collected 61 samples from a pet hospital in Beijing and used PCR or RT-PCR to detect FCV and feline herpesvirus 1 (FHV-1). Approximately 44.3% (27/61) of the samples were FCV positive, and 23.0% (14/61) were coinfected with FCV and FHV-1. FCV was isolated from 15 samples. One isolate was from a cat with virulent systemic disease (VSD) signs, and 14 isolates were from cats with stomatitis or upper respiratory diseases. The range of genome sequence identity among these isolates was 76.1-100.0%. Four of the isolates were considered to be of the same strain, with sequence identity ranging from 99.5 to 99.7%, and two isolates, BJ-280 and BJ-288, had completely identical sequences. The genomic sequence identity ranged from 76.0 to 88.5% between the 15 isolates and several reference strains, including the F4 and F9 vaccine strains. These results demonstrate that many FCV strains are co-circulating in Beijing. Due to the diversity of FCV in Beijing, it is necessary to monitor the current prevalence of the virus. This study provides more information for the development of effective measures to control FCV.


Asunto(s)
Infecciones por Caliciviridae/virología , Calicivirus Felino/clasificación , Calicivirus Felino/aislamiento & purificación , Enfermedades de los Gatos/virología , Filogenia , Animales , Beijing , Infecciones por Caliciviridae/inmunología , Infecciones por Caliciviridae/veterinaria , Calicivirus Felino/genética , Enfermedades de los Gatos/inmunología , Gatos , Mutación , Análisis de Secuencia , Varicellovirus
7.
ChemSusChem ; 13(17): 4394-4399, 2020 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-32668064

RESUMEN

Lignin may serve as a renewable feedstock for the production of chemicals and fuels if mild, scalable processes for its depolymerization can be devised. The use of small organic thiols represents a bioinspired strategy to cleave the ß-O-4 bond, the most common linkage in lignin. In the present study, synthetic ß-O-4 linked polymers were treated with organic thiols, yielding up to 90 % cleaved monomer products. Lignin extracted from poplar was also treated with organic thiols resulting in molecular weight reductions as high as 65 % (Mn ) in oxidized lignin. Thiol-based cleavage of other lignin linkages was also explored in small-molecule model systems to uncover additional potential pathways by which thiols might depolymerize lignin. The success of thiol-mediated cleavage on model dimers, polymers, and biomass-derived lignin illustrates the potential utility of small redox-active molecules to penetrate complex polymer matrices for depolymerization and subsequent valorization of lignin into fuels and chemicals.

8.
Environ Sci Pollut Res Int ; 27(7): 7353-7365, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31884551

RESUMEN

Wind power, a clean and renewable resource, is regarded as one of the most promising and economical resources during the transformation from fossil fuels to new energy resources. Thus, the accuracy of wind speed forecasting work is very important to integrate the wind resource into electrical power system on a large scale. To improve the short-term wind speed forecasting accuracy, a novel compound model is introduced in this paper. For the proposed model, the fast ensemble empirical mode decomposition method was employed to do the data preprocessing. After the data preprocessing, phase space reconstruction was used for choosing each sub-series' input and output vectors for the forecasting model dynamically. Then, the bat algorithm was applied to optimize the connection weights and thresholds of the traditional back propagation neural network. The forecasting results can be obtained through the aggregation of sequential prediction. The performance evaluation of this proposed model indicates that it can capture the nonlinear characteristics of the wind speed signal efficiently. The proposed model shows better performance when being compared with the parallel models.


Asunto(s)
Redes Neurales de la Computación , Viento , Algoritmos , Predicción/métodos
9.
Chemosphere ; 228: 694-701, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31063916

RESUMEN

Rapid increases in biodiesel use results in a surplus of its production by-product, glycerol, exceeding demand by traditional applications. In this study, Fe/C composites are prepared from glycerol-based precursors that include a dissolved iron salt via one-pot, two-stage pyrolysis. The first heating stage dehydrates, polymerizes, and carbonizes glycerol via acid-assisted pyrolysis while homogeneously dispersing a precipitated iron salt throughout the generated carbon matrix. The second stage develops porosity in the carbon support while reducing impregnated iron nanoparticles. Carbon supports with tailored physiochemical properties are generated by varying the dehydration acid (H2SO4 or H3PO4). Fe/C samples are predominantly mesoporous, with specific surface areas up to 560 m2/g and bulk iron contents up to 8.9 wt%, primarily as partially reduced Fe3O4. Cr(VI) removal follows the Freundlich model, reaching 107 mg/g at pH = 5. Mesoporous Fe/C composites are magnetic, allowing collection for reuse. After 4 use/recovery/reuse cycles, performance drops by < 25% when the products are applied in an actual wastewater system. Overall, the magnetic mesoporous Fe/C composite materials are straightforward to produce from waste glycerol and exhibit potential for environmental application in aqueous systems.


Asunto(s)
Cromo/aislamiento & purificación , Glicerol/química , Contaminantes Químicos del Agua/aislamiento & purificación , Carbono/química , Cromo/química , Concentración de Iones de Hidrógeno , Hierro/química , Magnetismo , Nanopartículas del Metal/química , Polimerizacion , Porosidad , Pirólisis , Aguas Residuales/química , Contaminantes Químicos del Agua/química
10.
J Hazard Mater ; 368: 477-486, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30710776

RESUMEN

Lake Erie experiences annual harmful algal blooms (HAB), but generated HAB biomass may provide a waste-based precursor for environmental remediation materials. Three classes of materials (i.e., algal powder biosorbent, porous carbon, and iron/carbon (Fe/C) composite) are prepared from HAB biomass. Algal powder is nonporous with diverse functional groups. Porous carbon, prepared via one-pot carbonization and activation, has surface area up to 430 m2/g. Fe/Cs are prepared by cultivating HAB biomass in iron-rich media, followed by one-pot pyrolysis. Fe/Cs have over 6 wt% iron (Fe0 and Fe3O4) and nitrogen doping (up to 4 wt%). Materials were applied in phenol and Cr(VI) removal tests to identify preferred products for use in water treatment applications. In deionized water, porous carbon removes the most phenol (52 mg/g), followed by algal powder (38 mg/g) and Fe/C (33 mg/g). Micropore volume and functional groups improve phenol removal. Cr(VI) removal follows: Fe/C (43 mg/g) > porous carbon (28 mg/g) > algal powder (17 mg/g), with synergistic adsorption and reduction elevating Fe/C's performance. Cr(VI) and phenol removal studies were completed with variable pH, ionic strength, and water composition to highlight application potential. This work proposes HAB biomass reuse for pollution control, investigating interaction mechanisms between materials and contaminants.


Asunto(s)
Cromo/química , Floraciones de Algas Nocivas , Fenoles/química , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Adsorción , Biomasa , Carbono/química , Concentración de Iones de Hidrógeno , Hierro/química , Concentración Osmolar , Porosidad
11.
J Hazard Mater ; 361: 162-168, 2019 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-30179787

RESUMEN

Understanding phenol adsorption-desorption mechanisms allows adsorbent tailoring to improve capacity and adsorbent reuse. Amberlite™ XAD4, a commercial styrenic polymer that is convenient to physically and chemically modify, was functionalized with dimethylamine (DMA) or trimethylamine (TMA) and/or hyper-cross-linked with 1,2-dichloroethane. These modifications were applied to enhance individual and/or synergistic phenol adsorption mechanisms, including hydrogen bonding, electrostatic interactions, and π-π dispersion forces. While XAD4-DMA adsorbs more phenol at pH = 6, XAD4-TMA has 23% higher capacity at pH = 11 due to adsorbate deprotonation that increases electrostatic interactions. Combining hyper-cross-linking with amination maximizes adsorption capacity due to synergistic impacts associated with increased micropore volume and surface affinity. Amine groups reduce desorption efficiency by 6-94% due to stronger adsorbate-adsorbent interactions compared to π-π dispersion forces. Isobutanol, which forms hydrogen bonds, is the most efficient desorption solvent, followed by chloroform, which has the same polarity index but does not hydrogen bond. n-Hexane only desorbs phenol removed with π-π dispersion forces and is not appropriate to regenerate aminated polymers. 0.1 N NaOH is an environmentally benign solvent for regenerating as-received XAD4 and XAD4-DMA, but not XAD4-TMA. Understanding phenol adsorption mechanisms allows development of physiochemically modified polymers with increased phenol adsorption capacity and regeneration efficiency.

12.
Mater Sci Eng C Mater Biol Appl ; 51: 182-8, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25842124

RESUMEN

Carbon nanotubes (CNTs) are a kind of nanomaterials which have been shown a promising application for biomedicine. There are a lot of studies to use CNTs to induce the differentiation of mesenchymal stem cells (MSCs). However, the cellular behavior of MSCs on the top layer of CNT array was still not well understood. In this study, we evaluated the morphology, the gene expressions of the osteogenic differentiation related markers, and the gene expressions of collagen type II (Col II, a marker of chondrogenesis), PPARγ (a marker of adipogenesis) and scleraxis (SCX, a marker of tenogenesis) in human mesenchymal stem cells (hMSCs) cultured on multi-walled carbon nanotube (MWCNT) array. The effect of MWCNT array on the mineralization of hMSCs which were cultured in osteogenic differentiation medium (ODM) was further assayed. Our results showed that the hMSCs cultured on MWCNT array spread well, formed numerous spiral shaped cell colons and showed perinuclear morphology. Compared to hMSCs cultured on dish, the gene expression of osteocalcin (OCN) was increased while the gene expressions of collagen type II (Col II), PPARγ and scleraxis (SCX) were decreased in hMSCs which were cultured on MWCNT array without any differentiation factors. Furthermore, compared with hMSCs on dish, the gene expressions of collagen type I (Col I), osteocalcin (OCN), osteopontin (OPN) and RUNX2, and the mineralization of hMSCs on MWCNT array were enhanced when they were cultured in osteogenic differentiation medium (ODM). Our results indicated that MWCNT array was able to promote the osteogenesis of hMSCs.


Asunto(s)
Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/fisiología , Nanotubos de Carbono/química , Osteoblastos/citología , Osteoblastos/fisiología , Osteogénesis/fisiología , Diferenciación Celular/fisiología , Células Cultivadas , Humanos , Ensayo de Materiales , Nanotubos de Carbono/ultraestructura , Tamaño de la Partícula , Propiedades de Superficie
13.
Biotechnol J ; 9(12): 1512-8, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24906189

RESUMEN

Conventional methods for quantitation of starch content in cells generally involve starch extraction steps and are usually labor intensive, thus a rapid and non-invasive method will be valuable. Using the starch-producing unicellular microalga Chlamydomonas reinhardtii as a model, we employed a customized Raman spectrometer to capture the Raman spectra of individual single cells under distinct culture conditions and along various growth stages. The results revealed a nearly linear correlation (R(2) = 0.9893) between the signal intensity at 478 cm(-1) and the starch content of the cells. We validated the specific correlation by showing that the starch-associated Raman peaks were eliminated in a mutant strain where the AGPase (ADP-glucose pyrophosphorylase) gene was disrupted and consequentially the biosynthesis of starch blocked. Furthermore, the method was validated in an industrial algal strain of Chlorella pyrenoidosa. This is the first demonstration of starch quantitation in individual live cells. Compared to existing cellular starch quantitation methods, this single-cell Raman spectra-based approach is rapid, label-free, non-invasive, culture-independent, low-cost, and potentially able to simultaneously track multiple metabolites in individual live cells, therefore should enable many new applications.


Asunto(s)
Microalgas/química , Microalgas/citología , Análisis de la Célula Individual/métodos , Espectrometría Raman/métodos , Almidón/análisis , Chlamydomonas reinhardtii/química , Chlamydomonas reinhardtii/citología , Reproducibilidad de los Resultados , Almidón/química
14.
Langmuir ; 30(26): 7789-97, 2014 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-24921672

RESUMEN

Mesoporous silica-coated Au nanorod (AuNR@SiO2) is one of the most important appealing nanomaterials for cancer therapy. The multifunctions of chemotherapy, photothermal therapy, and imaging of AuNR@SiO2 make it very useful for cancer therapy. In this study, AuNR@SiO2 was functionalized to deliver hydrophobic antitumor drug and to heat the targeted tumor with the energy of near-infrared (NIR). To carry out the function of targeting the tumor, tLyP-1, a kind of tumor homing and penetrating peptide, was engrafted to AuNR@SiO2. The fabricated AuNR@SiO2-tLyP-1 which was loaded with camptothecin (CPT) showed a robust, selective targeting and penetrating efficiency to Hela and MCF-7 cells and induced the death of these cells. When the micromasses of these AuNR@SiO2-tLyP-1 internalized cells were irradiated by NIR illumination, all the cells were killed instantaneously owing to the increased temperature caused by the surface plasma resonance (SPR) of the internalized AuNR@SiO2-tLyP-1. Moreover, the systematic toxicity of CPT-loaded AuNR@SiO2-tLyP-1 on human mesenchymal stem cells (hMSCs) was minimized, because the AuNR@SiO2-tLyP-1 selectively targeted and penetrated into the tumor cells, and little hydrophobic CPT was released into the culture medium or blood. This study indicates that the AuNR@SiO2-tLyP-1 drug delivery system (DDS) has great potential application for the chemo-photothermal cancer therapy.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Nanopartículas/química , Nanotubos/química , Fototerapia , Dióxido de Silicio/química , Línea Celular , Humanos
15.
Bioresour Technol ; 164: 214-20, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24859213

RESUMEN

Heterotrophy to photoautotrophy transition leads to the accumulation of lipids in Chlorella, which has potential to produce both healthy food and biofuels. Therefore, it is of key interest to study the metabolism shift and gene expression changes that influenced by the transition. Both total and neutral lipids contents were increased rapidly within 48 h after the switch to light environment, from 24.5% and 18.0% to 35.3% and 27.4%, respectively, along with the sharp decline of starch from 42.3% to 10.4% during 24h photoinduction phase. By analyzing the correlation between lipid content and gene expression, results revealed several genes viz. me g3137, me g6562, pepc g6833, dgat g3280 and dgat g7566, which encode corresponding enzymes in the de novo lipid biosynthesis pathway, are highly related to lipid accumulation and might be exploited as target genes for genetic modification. These results represented the feasibility of lipid production through trophic converting cultivation.


Asunto(s)
Vías Biosintéticas/genética , Chlorella/crecimiento & desarrollo , Chlorella/genética , Lípidos/biosíntesis , Nitrógeno/farmacología , Fósforo/farmacología , Transcripción Genética/efectos de los fármacos , Vías Biosintéticas/efectos de los fármacos , Chlorella/efectos de los fármacos , Chlorella/metabolismo , Diacilglicerol O-Acetiltransferasa/genética , Diacilglicerol O-Acetiltransferasa/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Procesos Heterotróficos/efectos de los fármacos , Procesos Heterotróficos/genética , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Procesos Fototróficos/efectos de los fármacos , Procesos Fototróficos/genética , Reacción en Cadena en Tiempo Real de la Polimerasa
16.
Biotechnol Biofuels ; 7(1): 17, 2014 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-24479413

RESUMEN

BACKGROUND: Microalgae can accumulate considerable amounts of lipids under different nutrient-deficient conditions, making them as one of the most promising sustainable sources for biofuel production. These inducible processes provide a powerful experimental basis for fully understanding the mechanisms of physiological acclimation, lipid hyperaccumulation and gene expression in algae. In this study, three nutrient-deficiency strategies, viz nitrogen-, phosphorus- and iron-deficiency were applied to trigger the lipid hyperaccumulation in an oleaginous Chlorella pyrenoidosa. Regular patterns of growth characteristics, lipid accumulation, physiological parameters, as well as the expression patterns of lipid biosynthesis-related genes were fully analyzed and compared. RESULTS: Our results showed that all the nutrient stress conditions could enhance the lipid content considerably compared with the control. The total lipid and neutral lipid contents exhibit the most marked increment under nitrogen deficiency, achieving 50.32% and 34.29% of dry cell weight at the end of cultivation, respectively. Both photosynthesis indicators and reactive oxygen species parameters reveal that physiological stress turned up when exposed to nutrient depletions. Time-course transcript patterns of lipid biosynthesis-related genes showed that diverse expression dynamics probably contributes to the different lipidic phenotypes under stress conditions. By analyzing the correlation between lipid content and gene expression level, we pinpoint several genes viz. rbsL, me g6562, accA, accD, dgat g2354, dgat g3280 and dgat g7063, which encode corresponding enzymes or subunits of malic enzyme, ACCase and diacylglycerol acyltransferase in the de novo TAG biosynthesis pathway, are highly related to lipid accumulation and might be exploited as target genes for genetic modification. CONCLUSION: This study provided us not only a comprehensive picture of adaptive mechanisms from physiological perspective, but also a number of targeted genes that can be used for a systematic metabolic engineering. Besides, our results also represented the feasibility of lipid production through trophic transition cultivation modes, throwing light on a two-stage microalgal lipid production strategy with which heterotrophy stage provides sufficient robust seed and nitrogen-starvation photoautotrophy stage enhances the overall lipid productivity.

17.
Langmuir ; 29(45): 13909-16, 2013 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-24116694

RESUMEN

The traditional bonding technology in electronic assembly relies on high-temperature processes, such as reflow soldering or curing of adhesives, which result in undesired thermal excursions and residual stress at the bonding interface. Therefore, there is an urgent need to attach electronic components on the circuit board with good mechanical and electrical properties at room temperature. In this paper, a room-temperature electrical surface fastener consisting of copper/parylene core/shell nanowire (NW) arrays were prepared, and van der Waals (VDW) forces were utilized to interconnect the core/shell NWs. Interestingly, the Parylene C film becomes conductive due to dielectric breakdown when the thickness of it is miniaturized to nanoscale. Our electrical surface fastener exhibits high macroscopic adhesion strength (∼25 N/cm(2)) and low electrical resistance (∼4.22 × 10(-2) Ω·cm(2)). Meanwhile, a new theoretical model based on VDW forces between the NWs is proposed to explain the adhesion mechanism of the core/shell structure.

18.
ACS Appl Mater Interfaces ; 5(16): 8173-8, 2013 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-23901778

RESUMEN

Individual carbon nanotube (CNT) exhibits extraordinary mechanics. However, the properties of the macroscopic CNT-based structure, such as CNT fibers and films, are far lower than that of individual CNT. One of the main reasons is the weak interaction between tubes and bundles in the CNT assemblies. It is understood that the cross-links in CNT assembly play a key role to improve the performance of CNT-based structure. Different approaches have been taken to create CNT joints. Most of these approaches focus on connecting CNTs by generating new covalent bonding between tubes. In this work, we intend to reinforce the CNT network by locking the contacted CNTs. Polyacrylonitrile (PAN) was used as precursor because PAN can form graphitic structures after carbonization. The freestanding superthin CNT sheet and CNT yarn were used to evaluate the effects of the PAN precursor to form cross-links between CNTs. The tensile strength of CNT yarn is improved when the yarn is partially infiltrated with PAN and consequently carbonated. High-resolution transmission electron microscopy observation of the sheets shows that graphite structures are formed and cross-link CNTs in CNT assembly.


Asunto(s)
Resinas Acrílicas/química , Nanotecnología , Nanotubos de Carbono/química , Microscopía Electrónica de Transmisión , Resistencia a la Tracción
19.
J Nanosci Nanotechnol ; 13(2): 1323-6, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23646628

RESUMEN

Self-supporting hierarchically-structured hollow ordered porous carbon spheres (HOPCSs) have been synthesized successfully using hollow ordered mesoporous silica spheres (HOMSSs) with MCM-41 pore structure within shells as templates. The SEM and TEM observations show that the final HOPCS product presents spherical morphology with hollow interiors. The results of HRTEM, small angle X-ray Diffraction (SAXRD) and N2 adsorption-desorption isotherms confirm that the HOPCS inversely replicate the MCM41 hexagonally-stacked ordered microstructures within shells and possess the ordered porosity. Furthermore, the formation of ordered porous structures within HOPCSs is due to the two aspects below: (i) the inverse carbonaceous replicas filling in hexagonally-stacked mesopores in HOMSSs are compacted tangentially due to curvature difference along the radial direction, self-supporting ordered porous structures after removing silica template; (ii) the additional carbon deposition layers exist on the outside surface of the replicas, cooperatively cementing the carbon fillers.

20.
PLoS One ; 7(11): e50414, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23209737

RESUMEN

BACKGROUND: Microalgae have been extensively investigated and exploited because of their competitive nutritive bioproducts and biofuel production ability. Chlorella are green algae that can grow well heterotrophically and photoautotrophically. Previous studies proved that shifting from heterotrophy to photoautotrophy in light-induced environments causes photooxidative damage as well as distinct physiologic features that lead to dynamic changes in Chlorella intracellular components, which have great potential in algal health food and biofuel production. However, the molecular mechanisms underlying the trophic transition remain unclear. METHODOLOGY/PRINCIPAL FINDINGS: In this study, suppression subtractive hybridization strategy was employed to screen and characterize genes that are differentially expressed in response to the light-induced shift from heterotrophy to photoautotrophy. Expressed sequence tags (ESTs) were obtained from 770 and 803 randomly selected clones among the forward and reverse libraries, respectively. Sequence analysis identified 544 unique genes in the two libraries. The functional annotation of the assembled unigenes demonstrated that 164 (63.1%) from the forward library and 62 (21.8%) from the reverse showed significant similarities with the sequences in the NCBI non-redundant database. The time-course expression patterns of 38 selected differentially expressed genes further confirmed their responsiveness to a diverse trophic status. The majority of the genes enriched in the subtracted libraries were associated with energy metabolism, amino acid metabolism, protein synthesis, carbohydrate metabolism, and stress defense. CONCLUSIONS/SIGNIFICANCE: The data presented here offer the first insights into the molecular foundation underlying the diverse microalgal trophic niche. In addition, the results can be used as a reference for unraveling candidate genes associated with the transition of Chlorella from heterotrophy to photoautotrophy, which holds great potential for further improving its lipid and nutrient production.


Asunto(s)
Chlorella/genética , Chlorella/metabolismo , Hibridación de Ácido Nucleico , Proteínas Algáceas/genética , Procesos Autotróficos , Biomasa , Biología Computacional/métodos , Mapeo Contig/métodos , ADN Complementario/metabolismo , Etiquetas de Secuencia Expresada , Alimentos , Biblioteca de Genes , Técnicas Genéticas , Lípidos/química , Microalgas/fisiología , Modelos Genéticos , Fotoquímica/métodos , Reacción en Cadena de la Polimerasa/métodos , ARN/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...