Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Cell Mol Med ; 28(15): e18544, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39098996

RESUMEN

Peripheral nerve defect are common clinical problem caused by trauma or other diseases, often leading to the loss of sensory and motor function in patients. Autologous nerve transplantation has been the gold standard for repairing peripheral nerve defects, but its clinical application is limited due to insufficient donor tissue. In recent years, the application of tissue engineering methods to synthesize nerve conduits for treating peripheral nerve defect has become a current research focus. This study introduces a novel approach for treating peripheral nerve defects using a tissue-engineered PLCL/SF/NGF@TA-PPy-RGD conduit. The conduit was fabricated by combining electrospun PLCL/SF with an NGF-loaded conductive TA-PPy-RGD gel. The gel, synthesized from RGD-modified tannic acid (TA) and polypyrrole (PPy), provides growth anchor points for nerve cells. In vitro results showed that this hybrid conduit could enhance PC12 cell proliferation, migration, and reduce apoptosis under oxidative stress. Furthermore, the conduit activated the PI3K/AKT signalling pathway in PC12 cells. In a rat model of sciatic nerve defect, the PLCL/SF/NGF@TA-PPy-RGD conduit significantly improved motor function, gastrocnemius muscle function, and myelin sheath axon thickness, comparable to autologous nerve transplantation. It also promoted angiogenesis around the nerve defect. This study suggests that PLCL/SF/NGF@TA-PPy-RGD conduits provide a conducive environment for nerve regeneration, offering a new strategy for peripheral nerve defect treatment, this study provided theoretical basis and new strategies for the research and treatment of peripheral nerve defect.


Asunto(s)
Hidrogeles , Factor de Crecimiento Nervioso , Regeneración Nerviosa , Oligopéptidos , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Nervio Ciático , Transducción de Señal , Animales , Regeneración Nerviosa/efectos de los fármacos , Ratas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Células PC12 , Nervio Ciático/efectos de los fármacos , Nervio Ciático/lesiones , Oligopéptidos/farmacología , Oligopéptidos/química , Hidrogeles/química , Factor de Crecimiento Nervioso/farmacología , Factor de Crecimiento Nervioso/metabolismo , Ratas Sprague-Dawley , Masculino , Proliferación Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Andamios del Tejido/química , Ingeniería de Tejidos/métodos , Polímeros/química
2.
Sci Data ; 11(1): 671, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38909027

RESUMEN

Accurate cropland map serves as the cornerstone of effective agricultural monitoring. Despite the continuous enrichment of remotely sensed cropland maps, pervasive inconsistencies have impeded their further application. This issue is particularly evident in areas with limited valid observations, such as southwestern China, which is characterized by its complex topography and fragmented parcels. In this study, we constructed multi-sourced samples independent of the data producers, taking advantage of open-source validation datasets and sampling to rectify the accuracy of ten contemporary cropland maps in southwestern China, decoded their inconsistencies, and generated a refined cropland map (CroplandSyn) by leveraging ten state-of-the-art remotely sensed cropland maps released from 2021 onwards using the self-adaptive threshold method. Validations, conducted at both prefecture and county scales, underscored the superiority of the refined cropland map, aligning more closely with national land survey data. The refined cropland map and samples are publicly available to users. Our study offers valuable insights for improving agricultural practices and land management in under-monitored areas by providing high-quality cropland maps and validation datasets.

4.
J Clin Transl Hepatol ; 12(4): 436-442, 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38638382

RESUMEN

Hepatic myelopathy (HM) is a rare neurological complication in the end stage of many liver diseases and is characterized by bilateral spastic paraparesis without sensory and sphincter dysfunction. It occurs owing to metabolic disorders and central nervous system dysfunction associated with cirrhosis. Without timely and effective clinical intervention, the prognosis of these patients is devastating. Although liver transplantation (LT) is an effective treatment for HM, the prognosis of these patients remains unsatisfactory. Early recognition and diagnosis of this disease are essential for improving patient prognosis. Here, we report a case of hepatitis B virus-associated decompensated cirrhosis with HM. The patient recovered well after LT. We also summarize the clinical characteristics and post-transplant outcomes of 25 patients with HM treated by LT through 2023, including this case.

5.
Hepatology ; 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37972953

RESUMEN

BACKGROUND AND AIMS: Microvascular invasion (MVI) is a crucial pathological hallmark of HCC that is closely associated with poor outcomes, early recurrence, and intrahepatic metastasis following surgical resection and transplantation. However, the intricate tumor microenvironment and transcriptional programs underlying MVI in HCC remain poorly understood. APPROACH AND RESULTS: We performed single-cell RNA sequencing of 46,789 individual cells from 10 samples of MVI+ (MVI present) and MVI- (MVI absent) patients with HCC. We conducted comprehensive and comparative analyses to characterize cellular and molecular features associated with MVI and validated key findings using external bulk, single-cell, and spatial transcriptomic datasets coupled with multiplex immunofluorescence assays. The comparison identified specific subtypes of immune and stromal cells critical to the formation of the immunosuppressive and pro-metastatic microenvironment in MVI+ tumors, including cycling T cells, lysosomal associated membrane protein 3+ dendritic cells, triggering receptor expressed on myeloid cells 2+ macrophages, myofibroblasts, and arterial i endothelial cells. MVI+ malignant cells are characterized by high proliferation rates, whereas MVI- malignant cells exhibit an inflammatory milieu. Additionally, we identified the midkine-dominated interaction between triggering receptor expressed on myeloid cells 2+ macrophages and malignant cells as a contributor to MVI formation and tumor progression. Notably, we unveiled a spatially co-located multicellular community exerting a dominant role in shaping the immunosuppressive microenvironment of MVI and correlating with unfavorable prognosis. CONCLUSIONS: This study provides a comprehensive single-cell atlas of MVI in HCC, shedding light on the complex multicellular ecosystem and molecular features associated with MVI. These findings deepen our understanding of the underlying mechanisms driving MVI and provide valuable insights for improving clinical diagnosis and developing more effective treatment strategies.

6.
Front Immunol ; 14: 1086342, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36936971

RESUMEN

Background: The protein-coding gene RAB22A, a member of the RAS oncogene family, is amplified or overexpressed in certain cancers. However, its action mechanism in hepatocellular carcinoma (HCC) remains unclear. Here, we aimed to examine the connection between RAB22A and survival prognosis in HCC and explore the biological significance of RAB22A. Methods: A database-based pan-cancer expression analysis of RAB22A was performed. Kaplan-Meier analysis and Cox regression were performed to evaluate the association between RAB22A expression and survival prognosis in HCC. Using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA), various potential biological functions and regulatory pathways of RAB22A in HCC were discovered. Tumor immune infiltration was studied using the single sample gene set enrichment analysis (ssGSEA) method. N6-methyladenosine modifications and the regulatory network of competitive endogenous RNA (ceRNA) were verified in the TCGA cohort. Results: RAB22A was upregulated in HCC samples and cell lines. A high RAB22A expression in HCC was strongly correlated with sex, race, age, weight, TNM stage, pathological stage, tumor status, histologic grade, TP53 mutation status, and alpha fetal protein (AFP) levels. Overexpression of RAB22A indicated a poor prognosis was related to overall survival (OS), disease-specific survival (DSS), and progression-free interval (PFI). GO and KEGG analyses revealed that the differentially expressed genes related to RAB22A might be involved in the proteasomal protein catabolic process, ncRNA processing, ribosome ribosomal subunit, protein serine/threonine kinase activity, protein serine kinase activity, Endocytosis, and non-alcoholic fatty liver disease. GSEA analyses revealed that the differentially expressed genes related to RAB22A might be involved in the T cell receptor, a co-translational protein, that binds to the membrane, axon guidance, ribosome, phagocytosis, and Eukaryotic translation initiation. RAB22A was correlated with N6-methyladenosine expression in HCC and established RAB22A-related ceRNA regulatory networks. Finally,RAB22A expression was positively connected the levels of infiltrating with T helper cells, Tcm cells, and Th2 cells,In contrast, we observed negatively correlations with cytotoxic cells, DCs, and pDCs cells.Moreover,RAB22A expression showed a strong correlation with various immunomarkergroups in HCC. Conclusions: RAB22A is a potential therapeutic target for improving HCC prognosis and is closely related to immune cell infiltration.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Pronóstico , Neoplasias Hepáticas/genética , Fosforilación , Procesamiento Proteico-Postraduccional , Adenosina , Proteínas de Unión al GTP rab/genética
7.
World J Clin Cases ; 11(5): 1188-1197, 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36874427

RESUMEN

BACKGROUND: Littoral cell angioma (LCA) is a rare benign vascular tumor of the spleen. Given its rarity, standard diagnostic and therapeutic recommendations have yet to be developed for reported cases. Splenectomy is the only method of obtaining a pathological diagnosis and providing treatment to obtain a favorable prognosis. CASE SUMMARY: A 33-year-old female presented with abdominal pain for one month. Computed tomography and ultrasound revealed splenomegaly with multiple lesions and two accessory spleens. The patient underwent laparoscopic total splenectomy and accessory splenectomy, and splenic LCA was confirmed by pathology. Four months after surgery, the patient presented with acute liver failure, was readmitted, rapidly progressed to multiple organ dysfunction syndrome and died. CONCLUSION: Preoperative diagnosis of LCA is challenging. We systematically reviewed online databases to identify the relevant literature and found a close relationship between malignancy and immunodysregulation. When a patient suffers from both splenic tumors and malignancy or immune-related disease, LCA is possible. Due to potential malignancy, total splenectomy (including accessory spleen) and regular follow-up after surgery are recommended. If LCA is diagnosed after surgery, a comprehensive postoperative examination is needed.

8.
World J Gastrointest Surg ; 15(2): 294-302, 2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36896303

RESUMEN

BACKGROUND: In recent years, mesh has become a standard repair method for parastomal hernia surgery due to its low recurrence rate and low postoperative pain. However, using mesh to repair parastomal hernias also carries potential dangers. One of these dangers is mesh erosion, a rare but serious complication following hernia surgery, particularly parastomal hernia surgery, and has attracted the attention of surgeons in recent years. CASE SUMMARY: Herein, we report the case of a 67-year-old woman with mesh erosion after parastomal hernia surgery. The patient, who underwent parastomal hernia repair surgery 3 years prior, presented to the surgery clinic with a complaint of chronic abdominal pain upon resuming defecation through the anus. Three months later, a portion of the mesh was excreted from the patient's anus and was removed by a doctor. Imaging revealed that the patient's colon had formed a t-branch tube structure, which was formed by the mesh erosion. The surgery reconstructed the structure of the colon and eliminated potential bowel perforation. CONCLUSION: Surgeons should consider mesh erosion since it has an insidious development and is difficult to diagnose at the early stage.

9.
Cancer Res ; 81(23): 5889-5903, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34580062

RESUMEN

As a member of the phospholipase family, phospholipase C beta 1 (PLCB1) is involved in phospholipid hydrolysis and is frequently upregulated in human cancer. However, little is known about the role of PLCB1 in cholangiocarcinoma (CCA). In this study, we uncover a role for PLCB1 in CCA progression and identify the underlying mechanisms. Both human CCA tissues and CCA cell lines expressed high levels of PLCB1. PLCB1 promoted tumor development and growth in various CCA mouse models, including transposon-based tumorigenesis models. PLCB1 activated PI3K/AKT signaling to induce CCA cells to undergo epithelial-to-mesenchymal transition (EMT). Mechanistically, PABPC1 interacted with PLCB1 and PI3K to amplify PLCB1-mediated EMT via PI3K/AKT/GSK3ß/Snail signaling. Ectopic PLCB1 induced resistance to treatment with gemcitabine combined with cisplatin, which could be reversed by the AKT inhibitor MK2206. PLCB1 expression was regulated by miR-26b-5p through direct interaction with PLCB1 3'UTR. Collectively, these data identify a PLCB1-PI3K-AKT signaling axis vital for CCA development and EMT, suggesting that AKT can be used as a therapeutic target to overcome chemotherapy resistance in CCA patients with high PLCB1 expression. SIGNIFICANCE: PLCB1 functions as an oncogenic driver in cholangiocarcinoma development that confers an actionable therapeutic vulnerability to AKT inhibition.


Asunto(s)
Neoplasias de los Conductos Biliares/patología , Colangiocarcinoma/patología , Resistencia a Antineoplásicos , Transición Epitelial-Mesenquimal , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfolipasa C beta/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Apoptosis , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Carcinogénesis , Movimiento Celular , Proliferación Celular , Colangiocarcinoma/tratamiento farmacológico , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Cisplatino/administración & dosificación , Desoxicitidina/administración & dosificación , Desoxicitidina/análogos & derivados , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Invasividad Neoplásica , Fosfatidilinositol 3-Quinasas/genética , Fosfolipasa C beta/genética , Pronóstico , Proteínas Proto-Oncogénicas c-akt/genética , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto , Gemcitabina
10.
Theranostics ; 11(10): 4743-4758, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33754025

RESUMEN

Aims: Emerging evidence is demonstrating that rapid regeneration of remnant liver elicited by associating liver partition and portal vein ligation for staged hepatectomy (ALPPS) may be attenuated in fibrotic livers. However, the molecular mechanisms responsible for this process are largely unknown. It is widely acknowledged that the TGFß1 signaling axis plays a major role in liver fibrosis. Therefore, the aims of this study were to elucidate the underlying mechanism of liver regeneration during ALPPS with or without fibrosis, specifically focusing on TGFß1 signaling. Approach: ALPPS was performed in rat models with N-diethylnitrosamine-induced liver fibrosis and no fibrosis. Functional liver remnant regeneration and expression of TGFß1 were analyzed during the ALPPS procedures. Adeno-associated virus-shTGFß1 and the small molecule inhibitor LY2157299 (galunisertib) were used separately or in combination to inhibit TGFß1 signaling in fibrotic rats. Results: Liver regeneration following ALPPS was lower in fibrotic rats than non-fibrotic rats. TGFß1 was a key mediator of postoperative regeneration in fibrotic liver. Interestingly, AAV-shTGFß1 accelerated the regeneration of fibrotic functional liver remnant and improved fibrosis, while LY2157299 only enhanced liver regeneration. Moreover, combination treatment elicited a stronger effect. Conclusions: Inhibition of TGFß1 accelerated regeneration of fibrotic liver, ameliorated liver fibrosis, and improved liver function following ALPPS. Therefore, TGFß1 is a promising therapeutic target in ALPPS to improve fibrotic liver reserve function and prognosis.


Asunto(s)
Hepatectomía/métodos , Hepatocitos/metabolismo , Cirrosis Hepática/metabolismo , Regeneración Hepática/fisiología , Hígado/fisiología , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Tetracloruro de Carbono/toxicidad , Dietilnitrosamina/toxicidad , Células Estrelladas Hepáticas/metabolismo , Ligadura , Hígado/efectos de los fármacos , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/patología , Regeneración Hepática/efectos de los fármacos , Vena Porta/cirugía , Cultivo Primario de Células , Pirazoles/farmacología , Quinolinas/farmacología , Ratas , Transducción de Señal , Factor de Crecimiento Transformador beta1/antagonistas & inhibidores
11.
J Cell Mol Med ; 25(7): 3226-3238, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33675150

RESUMEN

Dysregulation of circular RNAs (circRNAs) executes important regulatory roles in carcinogenesis. Nonetheless, few studies focused on the mechanisms of circRNAs in cholangiocarcinoma (CCA). qRT-PCR was applied to verify the dysregulated circRNAs in CCA. Fisher's exact test, Kaplan-Meier analysis and Cox regression model were utilized to investigate the clinical implications of circ-LAMP1 in the patients with CCA. The viability, apoptosis, migration and invasion of CCA cells were detected after silencing/overexpression of circ-LAMP1. Xenograft and lung metastasis assays were performed to verify the in vitro results. The regulatory networks of circ-LAMP1 were unveiled by bioinformatic analysis, RNA immunoprecipitation (RIP), RNA pulldown and luciferase reporter assays. Up-regulation of circ-LAMP1 was found in CCA tissue samples and cell lines. Enhanced level of circ-LAMP1 was linked to clinical severity, high post-operative recurrence and poor prognosis for the patients with CCA. Gain/loss-of-function assays confirmed the oncogenic role of circ-LAMP1 in mediating cell growth, apoptosis, migration and invasion. Nevertheless, the level of circ-LAMP1 had no effect on normal biliary epithelium proliferation and apoptosis. Animal study further verified the in vitro data. Mechanistically, circ-LAMP1 directly sponged miR-556-5p and miR-567, thereby releasing their suppression on YY1 at post-transcriptional level. Rescue assay indicated that the oncogenic role of circ-LAMP1 is partially dependent on its modulation of YY1 in CCA. In summary, this study suggested that circ-LAMP1 might be used as a promising biomarker/therapeutic target for CCA.


Asunto(s)
Neoplasias de los Conductos Biliares/genética , Colangiocarcinoma/genética , Proteína 1 de la Membrana Asociada a los Lisosomas/genética , MicroARNs/metabolismo , ARN Circular/genética , Factor de Transcripción YY1/metabolismo , Animales , Apoptosis , Neoplasias de los Conductos Biliares/metabolismo , Neoplasias de los Conductos Biliares/patología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patología , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Ratones Desnudos , Metástasis de la Neoplasia , ARN Circular/metabolismo
12.
Oncogene ; 39(38): 6099-6112, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32811980

RESUMEN

Hepatocellular carcinoma (HCC) is the fifth leading cause of cancer-related mortality in the United States. Exploring the mechanism of HCC and identifying ideal targets is critical. In the present study, we demonstrated metabolism dysfunction might be a key diver for the development of HCC. The mitochondrial amidoxime reducing component 2 (MARC2) as a newly discovered molybdenum enzyme was downregulated in human HCC tissues and HCC cells. Downregulated MARC2 was significantly associated with clinicopathological characteristics of HCC, such as tumor size, AFP levels, and tumor grade and was an independent risk factor of poor prognosis. Both in vitro and in vivo studies suggested that MARC2 suppressed the progression of HCC by regulating the protein expression level of p27. The Hippo signaling pathway and RNF123 were required for this process. Moreover, MARC2 regulated expression of HNF4A via the Hippo signaling pathway. HNF4A was recruited to the promoter of MARC2 forming a feedback loop. MARC2 levels were downregulated by methylation. We demonstrated the prognostic value of MARC2 in HCC and determined the mechanism by which MARC2 suppressed the progression of HCC in this study. These findings may lead to new therapeutic targets for HCC.


Asunto(s)
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/metabolismo , Oxidorreductasas/metabolismo , Adulto , Anciano , Animales , Carcinoma Hepatocelular/mortalidad , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Metabolismo Energético/genética , Femenino , Humanos , Neoplasias Hepáticas/mortalidad , Neoplasias Hepáticas/patología , Masculino , Ratones , Persona de Mediana Edad , Mitocondrias/genética , Mitocondrias/metabolismo , Metástasis de la Neoplasia , Pronóstico , Transducción de Señal , Carga Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
13.
J Exp Clin Cancer Res ; 39(1): 90, 2020 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-32430024

RESUMEN

BACKGROUND: ATP binding cassette subfamily A member 8 (ABCA8) belongs to the ATP binding cassette (ABC) transporter superfamily. ABCA8 is a transmembrane transporter responsible for the transport of organics, such as cholesterol, and drug efflux. Some members of the ABC subfamily, such as ABCA1, may inhibit cancer development. However, the mechanism of ABCA8 in the process of cancer activation is still ambiguous. METHODS: The expression of ABCA8 in human hepatocellular carcinoma (HCC) tissues and cell lines was examined using qPCR, immunoblotting, and immunohistochemical staining. The effects of ABCA8 on the proliferation and metastasis of HCC were examined using in vitro and in vivo functional tests. A luciferase reporter assay was performed to explore the binding between microRNA-374b-5p (miR-374b-5p) and the ABCA8 3'-untranslated region (UTR). RESULTS: ABCA8 was frequently down-regulated in HCC and this down-regulation was negatively correlated with prognosis. The overexpression of ABCA8 inhibited growth and metastasis in HCC, whereas the knockdown of ABCA8 exerted the antithetical effects both in vivo and in vitro. ABCA8 was down-regulated by miR-374b-5p; this down-regulation can induce epithelial transformation to mesenchyme via the ERK/ZEB1 signaling pathway and promote HCC progression. CONCLUSION: We exposed the prognostic value of ABCA8 in HCC, and illuminated a novel pathway in ABCA8-regulated inhibition of HCC tumorigenesis and metastasis. These findings may lead to a new targeted therapy for HCC through the regulation of ABCA8, and miR-374b-5p.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Sistema de Señalización de MAP Quinasas , MicroARNs/metabolismo , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo , Transportadoras de Casetes de Unión a ATP/biosíntesis , Transportadoras de Casetes de Unión a ATP/genética , Animales , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular/fisiología , Xenoinjertos , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , MicroARNs/genética , Persona de Mediana Edad , Metástasis de la Neoplasia , Transfección
14.
Front Neurol ; 10: 1149, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31798512

RESUMEN

Traumatic brain injury, a common cause of acquired epilepsy, is typical to find necrotic cell death within the injury core. The dynamic changes in astrocytes surrounding the injury core contribute to epileptic seizures associated with intense neuronal firing. However, little is known about the molecular mechanisms that activate astrocytes during traumatic brain injury or the effect of functional changes of astrocytes on seizures. In this comprehensive review, we present our cumulated understanding of the complex neurological affection in astrocytes after traumatic brain injury. We approached the problem through describing the changes of cell morphology, neurotransmitters, biochemistry, and cytokines in astrocytes during post-traumatic epilepsy. In addition, we also discussed the relationship between dynamic changes in astrocytes and seizures and the current pharmacologic agents used for treatment. Hopefully, this review will provide a more detailed knowledge from which better therapeutic strategies can be developed to treat post-traumatic epilepsy.

15.
Clin Cancer Res ; 25(17): 5407-5421, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31175094

RESUMEN

PURPOSE: As a main rate-limiting subunit of the 2-oxoglutarate dehydrogenase multienzyme complex, oxoglutarate dehydrogenase like (OGDHL) is involved in the tricarboxylic acid cycle, and frequently downregulated in human carcinoma and suppresses tumor growth. However, little is known about the role of OGDHL in human cancer, especially pancreatic cancer. Our goal is to study the underlying mechanism and define a novel signaling pathway controlled by OGDHL modulating pancreatic cancer progression. EXPERIMENTAL DESIGN: The expression and functional analysis of OGDHL, miR-214, and TWIST1 in human pancreatic cancer tissues, cell lines, and xenograft tumor model were investigated. The correlations between OGDHL and those markers were analyzed. RESULTS: OGDHL was downregulated in human pancreatic cancer and predicted poor prognosis. OGDHL overexpression inhibited migration and invasion of pancreatic cancer cells and suppressed pancreatic cancer tumor growth. OGDHL was shown to be negatively regulated by miR-214. TWIST1 upregulation induced miR-214 expression in pancreatic cancer. OGDHL suppressed TWIST1 expression through promoting ubiquitin-mediated proteasomal degradation of HIF1α and regulating AKT pathways. A combination of OGDHL downregulation and TWIST1 and miR-214 overexpression predicted worse prognosis in patients with pancreatic cancer. CONCLUSIONS: We demonstrated the prognostic value of OGDHL, miR-214, and TWIST1 in pancreatic cancer, and elucidated a novel pathway in OGDHL-regulated inhibition of pancreatic cancer tumorigenesis and metastasis. These findings may lead to new targeted therapy for pancreatic cancer through regulating OGDHL, miR-214, and TWIST1.


Asunto(s)
Complejo Cetoglutarato Deshidrogenasa/metabolismo , MicroARNs/metabolismo , Proteínas Nucleares/metabolismo , Neoplasias Pancreáticas/metabolismo , Proteína 1 Relacionada con Twist/metabolismo , Animales , Línea Celular Tumoral , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Transición Epitelial-Mesenquimal , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Complejo Cetoglutarato Deshidrogenasa/genética , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , MicroARNs/genética , Persona de Mediana Edad , Metástasis de la Neoplasia , Proteínas Nucleares/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Pronóstico , Transducción de Señal , Proteína 1 Relacionada con Twist/genética , Ensayos Antitumor por Modelo de Xenoinjerto
16.
EBioMedicine ; 44: 237-249, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31176678

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) is a highly fatal malignant cancer worldwide. Elucidating the underlying molecular mechanism of HCC progression is critical for the identification of new therapeutic targets for HCC. This study aimed to determine the role of Non-SMC condensin II complex subunit G2 (NCAPG2) in HCC proliferation and metastasis. METHODS: We detected NCAPG2 expression in tissues using immunohistochemistry, western blotting and real-time PCR. The effects of NCAPG2 on cell proliferation and metastasis were evaluated both in vitro and in vivo. Immunocytochemistry, enzyme linked immunosorbent assay, co-immunoprecipitation and luciferase reporter assay were performed to uncover the underlying mechanisms. FINDINGS: We found that NCAPG2 is frequently upregulated in HCC tumour tissues and predicts a poor prognosis. NCAPG2 overexpression promotes HCC proliferation, migration, and invasion through activating STAT3 and NF-κB signalling pathways. Moreover, NCAPG2 is a direct target of miR-188-3p. We demonstrated the existence of a positive feedback loop between NCAPG2 and p-STAT3 and a negative feedback loop between NCAPG2 and miR-188-3p. INTERPRETATION: Our study indicates that NCAPG2 overexpression could drive HCC proliferation and metastasis through activation of the STAT3 and NF-κB/miR-188-3p pathways. These findings may contribute to the identification of novel biomarkers and therapeutic targets for HCC. FUND: National Key Program for Science and Technology Research and Development (Grant No. 2016YFC0905902); the National Natural Scientific Foundation of China (Nos. 81772588, 81602058, 81773194); University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province (Grant No. UNPYSCT-2016200); the Innovative Research Program for Graduate of Harbin Medical University (Grant Nos. YJSCX2017-38HYD, YJSCX2016-18HYD).


Asunto(s)
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Proteínas Cromosómicas no Histona/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , MicroARNs/genética , FN-kappa B/metabolismo , Factor de Transcripción STAT3/metabolismo , Animales , Sitios de Unión , Biomarcadores de Tumor , Carcinoma Hepatocelular/mortalidad , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Proteínas Cromosómicas no Histona/metabolismo , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/mortalidad , Neoplasias Hepáticas/patología , Ratones , Modelos Biológicos , Metástasis de la Neoplasia , Dinámica Poblacional , Pronóstico , Regiones Promotoras Genéticas , Unión Proteica , Interferencia de ARN , Transducción de Señal , Ensayos Antitumor por Modelo de Xenoinjerto
17.
J Cell Physiol ; 234(12): 22623-22634, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31106426

RESUMEN

Cystatin SN, a specific cysteine protease inhibitor, is thought to be involved in various malignant tumors. Therefore, we evaluated the role of cystatin SN in hepatocellular carcinoma (HCC). Notably, cystatin SN was elevated in tumorous samples and cells. Moreover, overexpression of cystatin SN was correlated with tumor diameter and TNM stage. Cox multivariate analysis displayed that cystatin SN was an independent prognosis indicator and that high cystatin SN level was associated with a dismal prognosis. Moreover, cystatin SN enhancement facilitated the proliferation, migratory, and invasive potential of Huh7 and HCCLM3 cells, whereas cystatin SN knockdown caused the opposite effect. Cystatin SN also modulated the epithelial-mesenchymal transition progression through the PI3K/AKT pathway. In vivo cystatin SN promoted HCCLM3 cell growth and metastasis in xenograft mice model. Thus, cystatin SN was involved in HCC progression and could be a latent target for HCC treatment.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Regulación Neoplásica de la Expresión Génica/fisiología , Neoplasias Hepáticas/metabolismo , Cistatinas Salivales/metabolismo , Animales , Biomarcadores de Tumor , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Femenino , Humanos , Neoplasias Hepáticas/patología , Masculino , Ratones , Persona de Mediana Edad , Neoplasias Experimentales , Fosfatidilinositol 3-Quinasas , Pronóstico , Proteínas Proto-Oncogénicas c-akt , Cistatinas Salivales/genética , Regulación hacia Arriba
18.
BMC Bioinformatics ; 20(1): 93, 2019 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-30808287

RESUMEN

BACKGROUND: Ligand-binding proteins play key roles in many biological processes. Identification of protein-ligand binding residues is important in understanding the biological functions of proteins. Existing computational methods can be roughly categorized as sequence-based or 3D-structure-based methods. All these methods are based on traditional machine learning. In a series of binding residue prediction tasks, 3D-structure-based methods are widely superior to sequence-based methods. However, due to the great number of proteins with known amino acid sequences, sequence-based methods have considerable room for improvement with the development of deep learning. Therefore, prediction of protein-ligand binding residues with deep learning requires study. RESULTS: In this study, we propose a new sequence-based approach called DeepCSeqSite for ab initio protein-ligand binding residue prediction. DeepCSeqSite includes a standard edition and an enhanced edition. The classifier of DeepCSeqSite is based on a deep convolutional neural network. Several convolutional layers are stacked on top of each other to extract hierarchical features. The size of the effective context scope is expanded as the number of convolutional layers increases. The long-distance dependencies between residues can be captured by the large effective context scope, and stacking several layers enables the maximum length of dependencies to be precisely controlled. The extracted features are ultimately combined through one-by-one convolution kernels and softmax to predict whether the residues are binding residues. The state-of-the-art ligand-binding method COACH and some of its submethods are selected as baselines. The methods are tested on a set of 151 nonredundant proteins and three extended test sets. Experiments show that the improvement of the Matthews correlation coefficient (MCC) is no less than 0.05. In addition, a training data augmentation method that slightly improves the performance is discussed in this study. CONCLUSIONS: Without using any templates that include 3D-structure data, DeepCSeqSite significantlyoutperforms existing sequence-based and 3D-structure-based methods, including COACH. Augmentation of the training sets slightly improves the performance. The model, code and datasets are available at https://github.com/yfCuiFaith/DeepCSeqSite .


Asunto(s)
Aprendizaje Profundo , Redes Neurales de la Computación , Proteínas/metabolismo , Algoritmos , Secuencia de Aminoácidos , Bases de Datos de Proteínas , Ligandos , Unión Proteica
19.
Oncogene ; 38(3): 406-420, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30115976

RESUMEN

Hepatocellular carcinoma (HCC) is one of the most lethal cancers worldwide. The poor survival may be due to a high proportions of tumor recurrence and metastasis. Kinesin family member C1 (KIFC1) is highly expressed in a variety of neoplasms and is a potential marker for non-small cell lung cancer or ovarian adenocarcinoma metastasis. Nevertheless, the role of KIFC1 in HCC metastasis remains obscure. We investigated this in the present study using HCC cell lines and clinical specimens. Our results indicated that increased levels of KIFC1 were associated with poor prognosis and metastasis in HCC. In addition, KIFC1 induced epithelial-to-mesenchymal transition (EMT) and HCC metastasis both in vitro and in vivo. This tumorigenic effect depended on gankyrin; inhibiting gankyrin activity reversed EMT via activation of protein kinase B (AKT)/Twist family BHLH transcription factor 1 (AKT/TWIST1). We also found that KIFC1 was directly regulated by the microRNA miR-532-3p, whose downregulation was associated with metastatic progression in HCC. These results denote that a decrease in miR-532-3p levels results in increased KIFC1 expression in HCC, leading to metastasis via activation of the gankyrin/AKT/TWIST1 signaling pathway.


Asunto(s)
Carcinoma Hepatocelular/secundario , Transición Epitelial-Mesenquimal/fisiología , Cinesinas/fisiología , Neoplasias Hepáticas/patología , Neoplasias Pulmonares/secundario , MicroARNs/fisiología , Proteínas de Neoplasias/fisiología , ARN Neoplásico/fisiología , Animales , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/mortalidad , Línea Celular Tumoral , Regulación hacia Abajo , Xenoinjertos , Humanos , Estimación de Kaplan-Meier , Cinesinas/antagonistas & inhibidores , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/mortalidad , Neoplasias Pulmonares/fisiopatología , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , MicroARNs/biosíntesis , MicroARNs/genética , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas Nucleares/fisiología , Pronóstico , Complejo de la Endopetidasa Proteasomal/fisiología , Proteínas Proto-Oncogénicas/fisiología , Proteínas Proto-Oncogénicas c-akt/fisiología , Interferencia de ARN , ARN Neoplásico/biosíntesis , ARN Neoplásico/genética , Transducción de Señal , Proteína 1 Relacionada con Twist/fisiología
20.
J Exp Clin Cancer Res ; 37(1): 300, 2018 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-30514341

RESUMEN

BACKGROUND: Numerous studies have demonstrated that tetraspanin 1 (TSPAN1), a transmembrane protein, functions as an oncoprotein in many cancer types. However, its role and underlying molecular mechanism in cholangiocarcinoma (CCA) progression remain unclear. METHODS: In the present study, the expression of TSPAN1 in human CCA and adjacent nontumor tissues was examined using real-time PCR, western blot and immunohistochemistry. The effect of TSPAN1 on proliferation and metastasis was evaluated by functional assays both in vitro and in vivo. A luciferase reporter assay was performed to investigate the interaction between microRNA-194-5p (miR-194-5p) and TSPAN1 3'-untranslated region. Co-immunoprecipitation (co-IP) was used to confirm the interaction between TSPAN1 protein and integrin α6ß1 and western blot was used to explore TSPAN1 mechanism. RESULTS: We found that TSPAN1 was frequently upregulated in CCA and high levels of TSPAN1 correlated with TNM stage, especially metastasis in CCA. TSPAN1 overexpression promoted CCA growth, metastasis, and induced epithelial-to-mesenchymal transition (EMT), while its silencing had the opposite effect both in vitro and in vivo. To explore the differential expression of TSPAN1, we screened miR-194-5p as the upstream regulator of TSPAN1. A combination of high-level TSPAN1 and low-level miR-194-5p predicted poor prognosis in patients with CCA. Furthermore, in accordance with the functional characteristics of the TSPAN superfamily, we proved that TSPAN1 interacted with integrin α6ß1 to amplify the phosphoinositide-3-kinase (PI3K)/AKT/glycogen synthase kinase (GSK)-3ß/Snail family transcriptional repressor (Snail)/phosphatase and tensin homolog (PTEN) feedback loop. CONCLUSION: The results indicate that TSPAN1 could be a potential therapeutic target for CCA.


Asunto(s)
Neoplasias de los Conductos Biliares/metabolismo , Colangiocarcinoma/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Tetraspaninas/metabolismo , Animales , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/patología , Línea Celular Tumoral , Colangiocarcinoma/genética , Colangiocarcinoma/patología , Transición Epitelial-Mesenquimal , Xenoinjertos , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , MicroARNs/metabolismo , Persona de Mediana Edad , Metástasis de la Neoplasia , Fosfohidrolasa PTEN/metabolismo , Transducción de Señal , Factores de Transcripción de la Familia Snail/metabolismo , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...