Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Anat Rec (Hoboken) ; 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39238265

RESUMEN

Fibrosis and loss of functional capillary surface area may contribute to renal tissue hypoxia in a range of kidney diseases. However, there is limited quantitative information on the impact of kidney disease on the barriers to oxygen diffusion from cortical peritubular capillaries (PTCs) to kidney epithelial tubules. Here, we used stereological methods to quantify changes in total cortical PTC length and surface area, PTC length and surface densities, and diffusion distances between PTCs and kidney tubules in adenine-induced kidney injury. After 7 days of oral gavage of adenine (100 mg), plasma creatinine was 3.5-fold greater than in vehicle-treated rats, while total kidney weight was 83% greater. The total length of PTCs was similar in adenine-treated (1.47 ± 0.23 km (mean ± standard deviation)) to vehicle-treated (1.24 ± 0.24 km) rats, as was the surface density of PTCs (0.025 ± 0.002 vs. 0.024 ± 0.004 µm2/µm3). The total surface area of PTCs was 69% greater in adenine-treated than vehicle-treated rats. However, the length density of PTCs was 28% less in adenine-treated than vehicle-treated rats. Diffusion distances, from PTCs to the basal membrane of the nearest renal tubule (108%), and to the mid-point of the cytoplasmic height of the nearest tubular epithelial cell (57%), were markedly increased. These findings indicate that, in adenine-induced kidney injury, expansion of the renal cortical interstitium increases the distance required for diffusion of oxygen from PTCs to tubules, rendering the kidney cortex susceptible to hypoxia.

2.
Front Med (Lausanne) ; 11: 1343161, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38510448

RESUMEN

Corticosteroid therapy, often in combination with inhibition of the renin-angiotensin system, is first-line therapy for primary focal and segmental glomerulosclerosis (FSGS) with nephrotic-range proteinuria. However, the response to treatment is variable, and therefore new approaches to indicate the response to therapy are required. Podocyte depletion is a hallmark of early FSGS, and here we investigated whether podocyte number, density and/or size in diagnostic biopsies and/or the degree of glomerulosclerosis could indicate the clinical response to first-line therapy. In this retrospective single center cohort study, 19 participants (13 responders, 6 non-responders) were included. Biopsies obtained at diagnosis were prepared for analysis of podocyte number, density and size using design-based stereology. Renal function and proteinuria were assessed 6 months after therapy commenced. Responders and non-responders had similar levels of proteinuria at the time of biopsy and similar kidney function. Patients who did not respond to treatment at 6 months had a significantly higher percentage of glomeruli with global sclerosis than responders (p < 0.05) and glomerulosclerotic index (p < 0.05). Podocyte number per glomerulus in responders was 279 (203-507; median, IQR), 50% greater than that of non-responders (186, 118-310; p < 0.05). These findings suggest that primary FSGS patients with higher podocyte number per glomerulus and less advanced glomerulosclerosis are more likely to respond to first-line therapy at 6 months. A podocyte number less than approximately 216 per glomerulus, a GSI greater than 1 and percentage global sclerosis greater than approximately 20% are associated with a lack of response to therapy. Larger, prospective studies are warranted to confirm whether these parameters may help inform therapeutic decision making at the time of diagnosis of primary FSGS.

3.
bioRxiv ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-38106143

RESUMEN

Background: Low nephron number has a direct impact on the development of hypertension and chronic kidney disease later in life. While intrauterine growth restriction caused by maternal low protein diet (LPD) is thought to be a significant cause of reduced nephron endowment in impoverished communities, its influence on the cellular and molecular processes which drive nephron formation are poorly understood. Methods: We conducted a comprehensive characterization of the impact of LPD on kidney development using tomographic and confocal imaging to quantify changes in branching morphogenesis and the cellular and morphological features of nephrogenic niches across development. These analyses were paired with single-cell RNA sequencing to dissect the transcriptional changes that LPD imposes during renal development to affect nephron number. Results: Single cell analysis at E14.5 and P0 revealed differences in the expression of genes and pathways involved in metabolism, cell cycle, epigenetic regulators and reciprocal inductive signals in most cell types analyzed, yielding imbalances and shifts in cellular energy production and cellular trajectories. In the nephron progenitor cells, LPD impeded cellular commitment and differentiation towards pre-tubular and renal vesicle structures. Confocal microscopy revealed a reduction in the number of pre-tubular aggregates and proliferation in nephron progenitor cells. We also found changes in branching morphogenesis, with a reduction in cell proliferation in the ureteric tips as well as reduced tip and tip parent lengths by optical projection tomography which causes patterning defects. Conclusions: This unique profiling demonstrates how a fetal programming defect leads to low nephron endowment which is intricately linked to changes in both branching morphogenesis and the commitment of nephron progenitor cells. The commitment of progenitor cells is pivotal for nephron formation and is significantly influenced by nutritional factors, with a low protein diet driving alterations in this program which directly results in a reduced nephron endowment. Significance Statement: While a mother's diet can negatively impact the number of nephrons in the kidneys of her offspring, the root cellular and molecular drivers of these deficits have not been rigorously explored. In this study we use advanced imaging and gene expression analysis in mouse models to define how a maternal low protein diet, analogous to that of impoverished communities, results in reduced nephron endowment. We find that low protein diet has pleiotropic effects on metabolism and the normal developmental programs of gene expression. These profoundly impact the process of branching morphogenesis necessary to establish niches for nephron generation and change cell behaviors which regulate how and when nephron progenitor cells commit to differentiation.

4.
Physiol Rep ; 11(2): e15579, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36695822

RESUMEN

Podocytes are terminally differentiated epithelial cells in glomeruli. Podocyte injury and loss are features of many diseases leading to chronic kidney disease (CKD). The developmental origins of health and disease hypothesis propose an adverse intrauterine environment can lead to CKD later in life, especially when a second postnatal challenge is experienced. The aim of this study was to examine whether a suboptimal maternal environment would result in reduced podocyte endowment, increasing susceptibility to diabetes-induced renal injury. Female C57BL/6 mice were fed a low protein diet (LPD) to induce growth restriction or a normal protein diet (NPD) from 3 weeks before mating until weaning (postnatal Day 21, P21) when nephron and podocyte endowment were assessed in one male and one female offspring per litter. Littermates were administered streptozotocin or vehicle at 6 weeks of age. Urinary albumin excretion, glomerular size, and podometrics were assessed following 18 weeks of hyperglycemia. LPD offspring were growth restricted and had lower nephron and podocyte number at P21. However, by 24 weeks the podocyte deficit was no longer evident and despite low nephron endowment neither albuminuria nor glomerulosclerosis were observed. Podocyte number was unaffected by 18 weeks of hyperglycemia in NPD and LPD offspring. Diabetes increased glomerular volume reducing podocyte density, with more pronounced effects in LPD offspring. LPD and NPD diabetic offspring developed mild albuminuria with LPD demonstrating an earlier onset. LPD offspring also developed glomerular pathology. These findings indicate that growth-restricted LPD offspring with low nephron number and normalized podocyte endowment were more susceptible to alterations in glomerular volume and podocyte density leading to more rapid onset of albuminuria and renal injury than NPD offspring.


Asunto(s)
Diabetes Mellitus , Hiperglucemia , Podocitos , Insuficiencia Renal Crónica , Ratones , Animales , Masculino , Femenino , Albuminuria , Ratones Endogámicos C57BL
5.
J Dev Orig Health Dis ; 14(3): 426-436, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36647740

RESUMEN

Maternal protein restriction is often associated with structural and functional sequelae in offspring, particularly affecting growth and renal-cardiovascular function. However, there is little understanding as to whether hypertension and kidney disease occur because of a primary nephron deficit or whether controlling postnatal growth can result in normal renal-cardiovascular phenotypes. To investigate this, female Sprague-Dawley rats were fed either a low-protein (LP, 8.4% protein) or normal-protein (NP, 19.4% protein) diet prior to mating and until offspring were weaned at postnatal day (PN) 21. Offspring were then fed a non 'growth' (4.6% fat) which ensured that catch-up growth did not occur. Offspring growth was determined by weight and dual energy X-ray absorptiometry. Nephron number was determined at PN21 using the disector-fractionator method. Kidney function was measured at PN180 and PN360 using clearance methods. Blood pressure was measured at PN360 using radio-telemetry. Body weight was similar at PN1, but by PN21 LP offspring were 39% smaller than controls (Pdiet < 0.001). This difference was due to proportional changes in lean muscle, fat, and bone content. LP offspring remained smaller than NP offspring until PN360. In LP offspring, nephron number was 26% less in males and 17% less in females, than NP controls (Pdiet < 0.0004). Kidney function was similar across dietary groups and sexes at PN180 and PN360. Blood pressure was similar in LP and NP offspring at PN360. These findings suggest that remaining on a slow growth trajectory after exposure to a suboptimal intrauterine environment does not lead to the development of kidney dysfunction and hypertension.


Asunto(s)
Hipertensión , Efectos Tardíos de la Exposición Prenatal , Masculino , Ratas , Animales , Femenino , Humanos , Dieta con Restricción de Proteínas/efectos adversos , Ratas Sprague-Dawley , Riñón/metabolismo , Nefronas , Hipertensión/etiología , Efectos Tardíos de la Exposición Prenatal/etiología , Efectos Tardíos de la Exposición Prenatal/metabolismo
6.
Kidney Int ; 102(5): 1127-1135, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36175177

RESUMEN

Podocyte loss and resultant nephron loss are common processes in the development of glomerulosclerosis and chronic kidney disease. While the cortical distribution of glomerulosclerosis is known to be non-uniform, the relationship between the numbers of non-sclerotic glomeruli (NSG), podometrics and zonal differences in podometrics remain incompletely understood. To help define this, we studied autopsy kidneys from 50 adults with median age 68 years and median eGFR 73.5 mL/min/1.73m2 without apparent glomerular disease in a cross-sectional analysis. The number of NSG per kidney was estimated using the physical dissector/fractionator combination, while podometrics were estimated using model-based stereology. The number of NSG per kidney was directly correlated with podocyte number per tuft and podocyte density. Each additional 100,000 NSG per kidney was associated with 26 more podocytes per glomerulus and 16 podocytes per 106 µm3 increase in podocyte density. These associations were independent of clinical factors and cortical zone. While podocyte number per glomerulus was similar in the three zones, superficial glomeruli were the smallest and had the highest podocyte density but smallest podocytes. Increasing age and hypertension were associated with lower podocyte number, with age mostly affecting superficial glomeruli, and hypertension mostly affecting juxtamedullary glomeruli. Thus, in this first study to report a direct correlation between the number of NSG and podometrics, we suggest that podocyte number is decreasing in NSG of individuals losing nephrons. However, another possible interpretation may be that more nephrons might protect against further podocyte loss.


Asunto(s)
Hipertensión , Podocitos , Adulto , Humanos , Anciano , Estudios Transversales , Glomérulos Renales , Riñón
7.
Cell Tissue Res ; 388(2): 439-451, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35290515

RESUMEN

Progressive podocyte loss is a feature of healthy ageing. While previous studies have reported age-related changes in podocyte number, density and size and associations with proteinuria and glomerulosclerosis, few studies have examined how the response of remaining podocytes to podocyte depletion changes with age. Mild podocyte depletion was induced in PodCreiDTR mice aged 1, 6, 12 and 18 months via intraperitoneal administration of diphtheria toxin. Control mice received intraperitoneal vehicle. Podometrics, proteinuria and glomerular pathology were assessed, together with podocyte expression of p-rp-S6, a phosphorylation target that represents activity of the mammalian target of rapamycin (mTOR). Podocyte number per glomerulus did not change in control mice in the 18-month time period examined. However, control mice at 18 months had the largest podocytes and the lowest podocyte density. Podocyte depletion at 1, 6 and 12 months resulted in mild albuminuria but no glomerulosclerosis, whereas similar levels of podocyte depletion at 18 months resulted in both albuminuria and glomerulosclerosis. Following podocyte depletion at 6 and 12 months, the number of p-rp-S6 positive podocytes increased significantly, and this was associated with an adaptive increase in podocyte volume. However, at 18 months of age, remaining podocytes were unable to further elevate mTOR expression or undergo hypertrophic adaptation in response to mild podocyte depletion, resulting in marked glomerular pathology. These findings demonstrate the importance of mTORC1-mediated podocyte hypertrophy in both physiological (ageing) and adaptive settings, highlighting a functional limit to podocyte hypertrophy reached under physiological conditions.


Asunto(s)
Envejecimiento , Podocitos , Albuminuria/metabolismo , Albuminuria/patología , Animales , Femenino , Hipertrofia/metabolismo , Hipertrofia/patología , Masculino , Ratones , Podocitos/citología , Proteinuria , Serina-Treonina Quinasas TOR/metabolismo
8.
Am J Physiol Renal Physiol ; 321(3): F322-F334, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34308670

RESUMEN

Low birth weight is a risk factor for chronic kidney disease, whereas adult podocyte depletion is a key event in the pathogenesis of glomerulosclerosis. However, whether low birth weight due to poor maternal nutrition is associated with low podocyte endowment and glomerulosclerosis in later life is not known. Female Sprague-Dawley rats were fed a normal-protein diet (NPD; 20%) or low-protein diet (LPD; 8%), to induce low birth weight, from 3 wk before mating until postnatal day 21 (PN21), when kidneys from some male offspring were taken for quantitation of podocyte number and density in whole glomeruli using immunolabeling, tissue clearing, and confocal microscopy. The remaining offspring were fed a normal- or high-fat diet until 6 mo to induce catch-up growth and excessive weight gain, respectively. At PN21, podocyte number per glomerulus was 15% lower in low birth weight (LPD) than normal birth weight (NPD) offspring, with this deficit greater in outer glomeruli. Surprisingly, podocyte number in LPD offspring increased in outer glomeruli between PN21 and 6 mo, although an overall 9% podocyte deficit persisted. Postnatal fat feeding to LPD offspring did not alter podometric indexes or result in glomerular pathology at 6 mo, whereas fat feeding in NPD offspring was associated with far greater body and fat mass as well as podocyte loss, reduced podocyte density, albuminuria, and glomerulosclerosis. This is the first report that maternal diet can influence podocyte endowment. Our findings provide new insights into the impact of low birth weight, podocyte endowment, and postnatal weight on podometrics and kidney health in adulthood.NEW & NOTEWORTHY The present study shows, for the first time, that low birth weight as a result of maternal nutrition is associated with low podocyte endowment. However, a mild podocyte deficit at birth did not result in glomerular pathology in adulthood. In contrast, postnatal podocyte loss in combination with excessive body weight led to albuminuria and glomerulosclerosis. Taken together, these findings provide new insights into the associations between birth weight, podocyte indexes, postnatal weight, and glomerular pathology.


Asunto(s)
Tamaño Corporal/fisiología , Enfermedades Renales/patología , Podocitos/patología , Efectos Tardíos de la Exposición Prenatal/patología , Animales , Peso al Nacer/fisiología , Femenino , Riñón/patología , Glomérulos Renales/patología , Embarazo , Ratas Sprague-Dawley
9.
J Am Soc Nephrol ; 32(5): 1187-1199, 2021 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-33627345

RESUMEN

BACKGROUND: Podocyte depletion, low nephron number, aging, and hypertension are associated with glomerulosclerosis and CKD. However, the relationship between podometrics and nephron number has not previously been examined. METHODS: To investigate podometrics and nephron number in healthy Japanese individuals, a population characterized by a relatively low nephron number, we immunostained single paraffin sections from 30 Japanese living-kidney donors (median age, 57 years) with podocyte-specific markers and analyzed images obtained with confocal microscopy. We used model-based stereology to estimate podometrics, and a combined enhanced-computed tomography/biopsy-specimen stereology method to estimate nephron number. RESULTS: The median number of nonsclerotic nephrons per kidney was 659,000 (interquartile range [IQR], 564,000-825,000). The median podocyte number and podocyte density were 518 (IQR, 428-601) per tuft and 219 (IQR, 180-253) per 106µm3, respectively; these values are similar to those previously reported for other races. Total podocyte number per kidney (obtained by multiplying the individual number of nonsclerotic glomeruli by podocyte number per glomerulus) was 376 million (IQR, 259-449 million) and ranged 7.4-fold between donors. On average, these healthy kidneys lost 5.63 million podocytes per kidney per year, with most of this loss associated with glomerular loss resulting from global glomerulosclerosis, rather than podocyte loss from healthy glomeruli. Hypertension was associated with lower podocyte density and larger podocyte volume, independent of age. CONCLUSIONS: Estimation of the number of nephrons, podocytes, and other podometric parameters in individual kidneys provides new insights into the relationships between these parameters, age, and hypertension in the kidney. This approach might be of considerable value in evaluating the kidney in health and disease.


Asunto(s)
Hipertensión/patología , Glomérulos Renales/patología , Trasplante de Riñón , Donadores Vivos , Podocitos/patología , Factores de Edad , Anciano , Estudios de Casos y Controles , Recuento de Células , Femenino , Humanos , Japón , Masculino , Persona de Mediana Edad
10.
Anat Rec (Hoboken) ; 303(10): 2657-2667, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32567250

RESUMEN

A maternal low protein (LP) diet in rodents often results in low nephron endowment and renal pathophysiology in adult life, with outcomes often differing between male and female offspring. Precisely how a maternal LP diet results in low nephron endowment is unknown. We conducted morphological and molecular studies of branching morphogenesis and nephrogenesis to identify mechanisms and timepoints that might give rise to low nephron endowment. Sprague-Dawley rats were fed a normal protein (19.4% protein, NP) or LP (9% protein) diet for 3 weeks prior to mating and throughout gestation. Embryonic day 14.25 (E14.25) kidneys from males and females were either cultured for 2 days after which branching morphogenesis was quantified, or frozen for gene expression analysis. Real-time PCR was used to quantify expression of key nephrogenesis and branching morphogenesis genes at E14.25 and 17.25. At E17.25, nephron number was determined in fixed tissue. There was no effect of either maternal diet or sex on branching morphogenesis. Nephron number at E17.25 was 14% lower in male and female LP offspring than in NP controls. At E14.25 expression levels of genes involved in branching morphogenesis (Gfrα1, Bmp4, Gdnf) and nephrogenesis (Hnf4a, Pax2, Wnt4) were similar in the dietary groups, but significant differences between sexes were identified. At E17.25, expression of Gfrα1, Gdnf, Bmp4, Pax2 and Six2 was lower in LP offspring than NP offspring, in both male and female offspring. These findings provide new insights into how a LP diet leads to low nephron endowment and renal sexual dimorphism.


Asunto(s)
Dieta con Restricción de Proteínas , Expresión Génica , Riñón/embriología , Organogénesis/genética , Efectos Tardíos de la Exposición Prenatal/genética , Animales , Proteína Morfogenética Ósea 4/genética , Proteína Morfogenética Ósea 4/metabolismo , Femenino , Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Factor Nuclear 4 del Hepatocito/genética , Factor Nuclear 4 del Hepatocito/metabolismo , Riñón/metabolismo , Masculino , Nefronas/embriología , Factor de Transcripción PAX2/genética , Factor de Transcripción PAX2/metabolismo , Embarazo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Ratas , Ratas Sprague-Dawley , Proteína Wnt4/genética , Proteína Wnt4/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...