Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38712253

RESUMEN

Our understanding of region-specific microbial function within the gut is limited due to reliance on stool. Using a recently developed capsule device, we exploit regional sampling from the human intestines to develop models for interrogating small intestine (SI) microbiota composition and function. In vitro culturing of human intestinal contents produced stable, representative communities that robustly colonize the SI of germ-free mice. During mouse colonization, the combination of SI and stool microbes altered gut microbiota composition, functional capacity, and response to diet, resulting in increased diversity and reproducibility of SI colonization relative to stool microbes alone. Using a diverse strain library representative of the human SI microbiota, we constructed defined communities with taxa that largely exhibited the expected regional preferences. Response to a fiber-deficient diet was region-specific and reflected strain-specific fiber-processing and host mucus-degrading capabilities, suggesting that dietary fiber is critical for maintaining SI microbiota homeostasis. These tools should advance mechanistic modeling of the human SI microbiota and its role in disease and dietary responses.

2.
bioRxiv ; 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37693407

RESUMEN

Bifidobacteria commonly represent a dominant constituent of human gut microbiomes during infancy, influencing nutrition, immune development, and resistance to infection. Despite interest as a probiotic therapy, predicting the nutritional requirements and health-promoting effects of Bifidobacteria is challenging due to major knowledge gaps. To overcome these deficiencies, we used large-scale genetics to create a compendium of mutant fitness in Bifidobacterium breve (Bb). We generated a high density, randomly barcoded transposon insertion pool in Bb, and used this pool to determine Bb fitness requirements during colonization of germ-free mice and chickens with multiple diets and in response to hundreds of in vitro perturbations. To enable mechanistic investigation, we constructed an ordered collection of insertion strains covering 1462 genes. We leveraged these tools to improve models of metabolic pathways, reveal unexpected host- and diet-specific requirements for colonization, and connect the production of immunomodulatory molecules to growth benefits. These resources will greatly reduce the barrier to future investigations of this important beneficial microbe.

3.
Nat Metab ; 5(5): 777-788, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37165176

RESUMEN

Most processing of the human diet occurs in the small intestine. Metabolites in the small intestine originate from host secretions, plus the ingested exposome1 and microbial transformations. Here we probe the spatiotemporal variation of upper intestinal luminal contents during routine daily digestion in 15 healthy male and female participants. For this, we use a non-invasive, ingestible sampling device to collect and analyse 274 intestinal samples and 60 corresponding stool homogenates by combining five mass spectrometry assays2,3 and 16S rRNA sequencing. We identify 1,909 metabolites, including sulfonolipids and fatty acid esters of hydroxy fatty acids (FAHFA) lipids. We observe that stool and intestinal metabolomes differ dramatically. Food metabolites display trends in dietary biomarkers, unexpected increases in dicarboxylic acids along the intestinal tract and a positive association between luminal keto acids and fruit intake. Diet-derived and microbially linked metabolites account for the largest inter-individual differences. Notably, two individuals who had taken antibiotics within 6 months before sampling show large variation in levels of bioactive FAHFAs and sulfonolipids and other microbially related metabolites. From inter-individual variation, we identify Blautia species as a candidate to be involved in FAHFA metabolism. In conclusion, non-invasive, in vivo sampling of the human small intestine and ascending colon under physiological conditions reveals links between diet, host and microbial metabolism.


Asunto(s)
Ácidos Grasos , Metaboloma , Humanos , Masculino , Femenino , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/análisis , ARN Ribosómico 16S/metabolismo , Ácidos Grasos/metabolismo , Intestino Delgado/metabolismo , Heces/química
4.
Nature ; 617(7961): 581-591, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37165188

RESUMEN

The spatiotemporal structure of the human microbiome1,2, proteome3 and metabolome4,5 reflects and determines regional intestinal physiology and may have implications for disease6. Yet, little is known about the distribution of microorganisms, their environment and their biochemical activity in the gut because of reliance on stool samples and limited access to only some regions of the gut using endoscopy in fasting or sedated individuals7. To address these deficiencies, we developed an ingestible device that collects samples from multiple regions of the human intestinal tract during normal digestion. Collection of 240 intestinal samples from 15 healthy individuals using the device and subsequent multi-omics analyses identified significant differences between bacteria, phages, host proteins and metabolites in the intestines versus stool. Certain microbial taxa were differentially enriched and prophage induction was more prevalent in the intestines than in stool. The host proteome and bile acid profiles varied along the intestines and were highly distinct from those of stool. Correlations between gradients in bile acid concentrations and microbial abundance predicted species that altered the bile acid pool through deconjugation. Furthermore, microbially conjugated bile acid concentrations exhibited amino acid-dependent trends that were not apparent in stool. Overall, non-invasive, longitudinal profiling of microorganisms, proteins and bile acids along the intestinal tract under physiological conditions can help elucidate the roles of the gut microbiome and metabolome in human physiology and disease.


Asunto(s)
Ácidos y Sales Biliares , Microbioma Gastrointestinal , Intestinos , Metaboloma , Proteoma , Humanos , Ácidos y Sales Biliares/metabolismo , Microbioma Gastrointestinal/fisiología , Proteoma/metabolismo , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacteriófagos/aislamiento & purificación , Bacteriófagos/fisiología , Heces/química , Heces/microbiología , Heces/virología , Intestinos/química , Intestinos/metabolismo , Intestinos/microbiología , Intestinos/fisiología , Intestinos/virología , Digestión/fisiología
5.
BMC Biol ; 20(1): 285, 2022 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-36527020

RESUMEN

BACKGROUND: Ordered transposon-insertion collections, in which specific transposon-insertion mutants are stored as monocultures in a genome-scale collection, represent a promising tool for genetic dissection of human gut microbiota members. However, publicly available collections are scarce and the construction methodology remains in early stages of development. RESULTS: Here, we describe the assembly of a genome-scale ordered collection of transposon-insertion mutants in the model gut anaerobe Bacteroides thetaiotaomicron VPI-5482 that we created as a resource for the research community. We used flow cytometry to sort single cells from a pooled library, located mutants within this initial progenitor collection by applying a pooling strategy with barcode sequencing, and re-arrayed specific mutants to create a condensed collection with single-insertion strains covering >2500 genes. To demonstrate the potential of the condensed collection for phenotypic screening, we analyzed growth dynamics and cell morphology. We identified both growth defects and altered cell shape in mutants disrupting sphingolipid synthesis and thiamine scavenging. Finally, we analyzed the process of assembling the B. theta condensed collection to identify inefficiencies that limited coverage. We demonstrate as part of this analysis that the process of assembling an ordered collection can be accurately modeled using barcode sequencing data. CONCLUSION: We expect that utilization of this ordered collection will accelerate research into B. theta physiology and that lessons learned while assembling the collection will inform future efforts to assemble ordered mutant collections for an increasing number of gut microbiota members.


Asunto(s)
Bacteroides thetaiotaomicron , Humanos , Mutagénesis Insercional , Bacteroides thetaiotaomicron/genética , Elementos Transponibles de ADN , Biblioteca de Genes , Genoma Bacteriano
6.
PLoS Biol ; 20(9): e3001727, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36067229

RESUMEN

Conventional cuvette-based and microfluidics-based electroporation approaches for bacterial gene delivery have distinct advantages, but they are typically limited to relatively small sample volumes, reducing their utility for applications requiring high throughput such as the generation of mutant libraries. Here, we present a scalable, large-scale bacterial gene delivery approach enabled by a disposable, user-friendly microfluidic electroporation device requiring minimal device fabrication and straightforward operation. We demonstrate that the proposed device can outperform conventional cuvettes in a range of situations, including across Escherichia coli strains with a range of electroporation efficiencies, and we use its large-volume bacterial electroporation capability to generate a library of transposon mutants in the anaerobic gut commensal Bifidobacterium longum.


Asunto(s)
Técnicas de Transferencia de Gen , Genes Bacterianos , Microfluídica , Bifidobacterium longum/genética , Electroporación/métodos , Escherichia coli/genética , Técnicas de Transferencia de Gen/instrumentación , Microfluídica/métodos , Transformación Bacteriana/genética
7.
Science ; 376(6594): eabl4896, 2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35549404

RESUMEN

Molecular characterization of cell types using single-cell transcriptome sequencing is revolutionizing cell biology and enabling new insights into the physiology of human organs. We created a human reference atlas comprising nearly 500,000 cells from 24 different tissues and organs, many from the same donor. This atlas enabled molecular characterization of more than 400 cell types, their distribution across tissues, and tissue-specific variation in gene expression. Using multiple tissues from a single donor enabled identification of the clonal distribution of T cells between tissues, identification of the tissue-specific mutation rate in B cells, and analysis of the cell cycle state and proliferative potential of shared cell types across tissues. Cell type-specific RNA splicing was discovered and analyzed across tissues within an individual.


Asunto(s)
Atlas como Asunto , Células , Especificidad de Órganos , Empalme del ARN , Análisis de la Célula Individual , Transcriptoma , Linfocitos B/metabolismo , Células/metabolismo , Humanos , Especificidad de Órganos/genética , Linfocitos T/metabolismo
8.
iScience ; 25(4): 103907, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35340431

RESUMEN

While microbial communities inhabit a wide variety of complex natural environments, in vitro culturing enables highly controlled conditions and high-throughput interrogation for generating mechanistic insights. In vitro assemblies of gut commensals have recently been introduced as models for the intestinal microbiota, which plays fundamental roles in host health. However, a protocol for 16S rRNA sequencing and analysis of in vitro samples that optimizes financial cost, time/effort, and accuracy/reproducibility has yet to be established. Here, we systematically identify protocol elements that have significant impact, introduce bias, and/or can be simplified. Our results indicate that community diversity and composition are generally unaffected by substantial protocol streamlining. Additionally, we demonstrate that a strictly aerobic halophile is an effective spike-in for estimating absolute abundances in communities of anaerobic gut commensals. This time- and money-saving protocol should accelerate discovery by increasing 16S rRNA data reliability and comparability and through the incorporation of absolute abundance estimates.

9.
Nat Protoc ; 16(6): 3049-3071, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34021295

RESUMEN

Commensal bacteria from the human intestinal microbiota play important roles in health and disease. Research into the mechanisms by which these bacteria exert their effects is hampered by the complexity of the microbiota, the strict growth requirements of the individual species and a lack of genetic tools and resources. The assembly of ordered transposon insertion libraries, in which nearly all nonessential genes have been disrupted and the strains stored as independent monocultures, would be a transformative resource for research into many microbiota members. However, assembly of these libraries must be fast and inexpensive in order to empower investigation of the large number of species that typically compose gut communities. The methods used to generate ordered libraries must also be adapted to the anaerobic growth requirements of most intestinal bacteria. We have developed a protocol to assemble ordered libraries of transposon insertion mutants that is fast, cheap and effective for even strict anaerobes. The protocol differs from currently available methods by making use of cell sorting to order the library and barcoded transposons to facilitate the localization of ordered mutations in the library. By tracking transposon insertions using barcode sequencing, our approach increases the accuracy and reduces the time and effort required to locate mutants in the library. Ordered libraries can be sorted and characterized over the course of 2 weeks using this approach. We expect this protocol will lower the barrier to generating comprehensive, ordered mutant libraries for many species in the human microbiota, allowing for new investigations into genotype-phenotype relationships within this important microbial ecosystem.


Asunto(s)
Bacterias Anaerobias/genética , Elementos Transponibles de ADN , Biblioteca de Genes , Técnicas Genéticas , Programas Informáticos , Código de Barras del ADN Taxonómico , Microbioma Gastrointestinal
10.
Int J Mol Sci ; 21(24)2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33333883

RESUMEN

Huntington's disease (HD) is a genetic neurodegenerative disorder characterized by motor, cognitive, and psychiatric symptoms, accompanied by massive neuronal degeneration in the striatum. In this study, we utilized solid lipid curcumin particles (SLCPs) and solid lipid particles (SLPs) to test their efficacy in reducing deficits in YAC128 HD mice. Eleven-month-old YAC128 male and female mice were treated orally with SLCPs (100 mg/kg) or equivalent volumes of SLPs or vehicle (phosphate-buffered saline) every other day for eight weeks. Learning and memory performance was assessed using an active-avoidance task on week eight. The mice were euthanized, and their brains were processed using Golgi-Cox staining to study the morphology of medium spiny neurons (MSNs) and Western blots to quantify amounts of DARPP-32, brain-derived neurotrophic factor (BDNF), TrkB, synaptophysin, and PSD-95. We found that both SLCPs and SLPs improved learning and memory in HD mice, as measured by the active avoidance task. We also found that SLCP and SLP treatments preserved MSNs arborization and spinal density and modulated synaptic proteins. Our study shows that SLCPs, as well as the lipid particles, can have therapeutic effects in old YAC128 HD mice in terms of recovering from HD brain pathology and cognitive deficits.


Asunto(s)
Curcumina/administración & dosificación , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/psicología , Liposomas , Memoria/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Animales , Biomarcadores , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Espinas Dendríticas/efectos de los fármacos , Espinas Dendríticas/metabolismo , Modelos Animales de Enfermedad , Fosfoproteína 32 Regulada por Dopamina y AMPc/metabolismo , Enfermedad de Huntington/etiología , Aprendizaje/efectos de los fármacos , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/etiología , Trastornos de la Memoria/metabolismo , Ratones , Ratones Transgénicos , Neuronas/patología , Receptor trkB/metabolismo
11.
Genome Med ; 12(1): 50, 2020 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-32471482

RESUMEN

BACKGROUND: Populations of closely related microbial strains can be simultaneously present in bacterial communities such as the human gut microbiome. We recently developed a de novo genome assembly approach that uses read cloud sequencing to provide more complete microbial genome drafts, enabling precise differentiation and tracking of strain-level dynamics across metagenomic samples. In this case study, we present a proof-of-concept using read cloud sequencing to describe bacterial strain diversity in the gut microbiome of one hematopoietic cell transplantation patient over a 2-month time course and highlight temporal strain variation of gut microbes during therapy. The treatment was accompanied by diet changes and administration of multiple immunosuppressants and antimicrobials. METHODS: We conducted short-read and read cloud metagenomic sequencing of DNA extracted from four longitudinal stool samples collected during the course of treatment of one hematopoietic cell transplantation (HCT) patient. After applying read cloud metagenomic assembly to discover strain-level sequence variants in these complex microbiome samples, we performed metatranscriptomic analysis to investigate differential expression of antibiotic resistance genes. Finally, we validated predictions from the genomic and metatranscriptomic findings through in vitro antibiotic susceptibility testing and whole genome sequencing of isolates derived from the patient stool samples. RESULTS: During the 56-day longitudinal time course that was studied, the patient's microbiome was profoundly disrupted and eventually dominated by Bacteroides caccae. Comparative analysis of B. caccae genomes obtained using read cloud sequencing together with metagenomic RNA sequencing allowed us to identify differences in substrain populations over time. Based on this, we predicted that particular mobile element integrations likely resulted in increased antibiotic resistance, which we further supported using in vitro antibiotic susceptibility testing. CONCLUSIONS: We find read cloud assembly to be useful in identifying key structural genomic strain variants within a metagenomic sample. These strains have fluctuating relative abundance over relatively short time periods in human microbiomes. We also find specific structural genomic variations that are associated with increased antibiotic resistance over the course of clinical treatment.


Asunto(s)
Bacterias/genética , Microbioma Gastrointestinal/genética , Antiinfecciosos/farmacología , Azacitidina/farmacología , Azitromicina/farmacología , Bacterias/clasificación , Bacterias/efectos de los fármacos , Bacterias/aislamiento & purificación , Ciprofloxacina/farmacología , ADN Bacteriano , Dieta , Heces/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Genoma Bacteriano , Trasplante de Células Madre Hematopoyéticas , Humanos , Inmunosupresores/farmacología , Masculino , Metagenoma , Persona de Mediana Edad , Síndromes Mielodisplásicos/microbiología , Síndromes Mielodisplásicos/terapia , Mielofibrosis Primaria/microbiología , Mielofibrosis Primaria/terapia , RNA-Seq , Análisis de Secuencia de ADN
13.
J Cell Biol ; 217(12): 4141-4154, 2018 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-30348748

RESUMEN

The correct assembly of ribosomes from ribosomal RNAs (rRNAs) and ribosomal proteins (RPs) is critical, as indicated by the diseases caused by RP haploinsufficiency and loss of RP stoichiometry in cancer cells. Nevertheless, how assembly of each RP is ensured remains poorly understood. We use yeast genetics, biochemistry, and structure probing to show that the assembly factor Ltv1 facilitates the incorporation of Rps3, Rps10, and Asc1/RACK1 into the small ribosomal subunit head. Ribosomes from Ltv1-deficient yeast have substoichiometric amounts of Rps10 and Asc1 and show defects in translational fidelity and ribosome-mediated RNA quality control. These defects provide a growth advantage under some conditions but sensitize the cells to oxidative stress. Intriguingly, relative to glioma cell lines, breast cancer cells have reduced levels of LTV1 and produce ribosomes lacking RPS3, RPS10, and RACK1. These data describe a mechanism to ensure RP assembly and demonstrate how cancer cells circumvent this mechanism to generate diverse ribosome populations that can promote survival under stress.


Asunto(s)
Neoplasias de la Mama/metabolismo , Proteínas de Neoplasias/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Humanos , Proteínas de Neoplasias/genética , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
14.
Front Neurosci ; 11: 628, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29209158

RESUMEN

Huntington's disease (HD) is a genetic neurodegenerative disorder characterized by neuronal loss and motor dysfunction. Although there is no effective treatment, stem cell transplantation offers a promising therapeutic strategy, but the safety and efficacy of this approach needs to be optimized. The purpose of this study was to test the potential of intra-striatal transplantation of induced pluripotent stem cell-derived neural stem cells (iPS-NSCs) for treating HD. For this purpose, we developed mouse adenovirus-generated iPSCs, differentiated them into neural stem cells in vitro, labeled them with Hoechst, and transplanted them bilaterally into striata of 10-month old wild type (WT) and HD YAC128 mice. We assessed the efficiency of these transplanted iPS-NSCs to reduce motor deficits in YAC128 mice by testing them on an accelerating rotarod task at 1 day prior to transplantation, and then weekly for 10 weeks. Our results showed an amelioration of locomotor deficits in YAC128 mice that received iPS-NSC transplantations. Following testing, the mice were sacrificed, and their brains were analyzed using immunohistochemistry and Western blot (WB). The results from our histological examinations revealed no signs of tumors and evidence that many iPS-NSCs survived and differentiated into region-specific neurons (medium spiny neurons) in both WT and HD mice, as confirmed by co-labeling of Hoechst-labeled transplanted cells with NeuN and DARPP-32. Also, counts of Hoechst-labeled cells revealed that a higher proportion were co-labeled with DARPP-32 and NeuN in HD-, compared to WT- mice, suggesting a dissimilar differentiation pattern in HD mice. Whereas significant decreases were found in counts of NeuN- and DARPP-32-labeled cells, and for neuronal density measures in striata of HD vehicle controls, such decrements were not observed in the iPS-NSCs-transplanted-HD mice. WB analysis showed increase of BDNF and TrkB levels in striata of transplanted HD mice compared to HD vehicle controls. Collectively, our data suggest that iPS-NSCs may provide an effective option for neuronal replacement therapy in HD.

15.
Angew Chem Int Ed Engl ; 56(43): 13498-13502, 2017 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-28810078

RESUMEN

While a myriad non-coding RNAs are known to be essential in cellular processes and misregulated in diseases, the development of RNA-targeted small molecule probes has met with limited success. To elucidate the guiding principles for selective small molecule/RNA recognition, we analyzed cheminformatic and shape-based descriptors for 104 RNA-targeted ligands with demonstrated biological activity (RNA-targeted BIoactive ligaNd Database, R-BIND). We then compared R-BIND to both FDA-approved small molecule drugs and RNA ligands without reported bioactivity. Several striking trends emerged for bioactive RNA ligands, including: 1) Compliance to medicinal chemistry rules, 2) distinctive structural features, and 3) enrichment in rod-like shapes over others. This work provides unique insights that directly facilitate the selection and synthesis of RNA-targeted libraries with the goal of efficiently identifying selective small molecule ligands for therapeutically relevant RNAs.


Asunto(s)
Ligandos , ARN/química , Bibliotecas de Moléculas Pequeñas/química , Bases de Datos de Compuestos Químicos , Descubrimiento de Drogas , Análisis de Componente Principal , ARN/metabolismo , Bibliotecas de Moléculas Pequeñas/metabolismo
16.
Int J Mol Sci ; 18(3)2017 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-28335421

RESUMEN

Drug delivery into the central nervous system (CNS) is challenging due to the blood-brain barrier (BBB) and drug delivery into the brain overcoming the BBB can be achieved using nanoparticles such as dendrimers. The conventional cationic dendrimers used are highly toxic. Therefore, the present study investigates the role of novel mixed surface dendrimers, which have potentially less toxicity and can cross the BBB when administered through the carotid artery in mice. In vitro experiments investigated the uptake of amine dendrimers (G1-NH2 and G4-NH2) and novel dendrimers (G1-90/10 and G4-90/10) by primary cortical cultures. In vivo experiments involved transplantation of G4-90/10 into mice through (1) invasive intracranial injections into the striatum; and (2) less invasive carotid injections. The animals were sacrificed 24-h and 1-week post-transplantations and their brains were analyzed. In vivo experiments proved that the G4-90/10 can cross the BBB when injected through the carotid artery and localize within neurons and glial cells. The dendrimers were found to migrate through the corpus callosum 1-week post intracranial injection. Immunohistochemistry showed that the migrating cells are the dendrimer-infected glial cells. Overall, our results suggest that poly-amidoamine (PAMAM) dendrimers may be used as a minimally invasive means to deliver biomolecules for treating neurological diseases or disorders.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Dendrímeros/farmacocinética , Animales , Arterias Carótidas/metabolismo , Células Cultivadas , Dendrímeros/administración & dosificación , Dendrímeros/síntesis química , Inyecciones Intraarteriales , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA