Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Molecules ; 26(23)2021 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-34885825

RESUMEN

The δ-opioid receptor (δOR) holds great potential as a therapeutic target. Yet, clinical drug development, which has focused on δOR agonists that mimic the potent and selective tool compound SNC80 have largely failed. It has increasingly become apparent that the SNC80 scaffold carries with it potent and efficacious ß-arrestin recruitment. Here, we screened a relatively small (5120 molecules) physical drug library to identify δOR agonists that underrecruit ß-arrestin, as it has been suggested that compounds that efficaciously recruit ß-arrestin are proconvulsant. The screen identified a hit compound and further characterization using cellular binding and signaling assays revealed that this molecule (R995045, compound 1) exhibited ten-fold selectivity over µ- and κ-opioid receptors. Compound 1 represents a novel chemotype at the δOR. A subsequent characterization of fourteen analogs of compound 1, however did not identify a more potent δOR agonist. Computational modeling and in vitro characterization of compound 1 in the presence of the endogenous agonist leu-enkephalin suggest compound 1 may also bind allosterically and negatively modulate the potency of Leu-enkephalin to inhibit cAMP, acting as a 'NAM-agonist' in this assay. The potential physiological utility of such a class of compounds will need to be assessed in future in vivo assays.


Asunto(s)
Receptores Opioides delta/agonistas , Regulación Alostérica/efectos de los fármacos , Aminoácidos/química , Sitios de Unión , AMP Cíclico/metabolismo , Encefalina Leucina/química , Encefalina Leucina/farmacología , Células HEK293 , Humanos , Concentración 50 Inhibidora , Simulación de Dinámica Molecular , Receptores Opioides kappa/metabolismo , Receptores Opioides mu/metabolismo , beta-Arrestinas/metabolismo
2.
RSC Med Chem ; 12(11): 1958-1967, 2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34825191

RESUMEN

µ-Opioid receptor agonists provide potent and effective acute analgesia; however, their therapeutic window narrows considerably upon repeated administration, such as required for treating chronic pain. In contrast, bifunctional µ/δ opioid agonists, such as the endogenous enkephalins, have potential for treating both acute and chronic pain. However, enkephalins recruit ß-arrestins, which correlate with certain adverse effects at µ- and δ-opioid receptors. Herein, we identify the C-terminus of Tyr-ψ[(Z)CF[double bond, length as m-dash]CH]-Gly-Leu-enkephalin, a stable enkephalin derivative, as a key site to regulate bias of both δ- and µ-opioid receptors. Using in vitro assays, substitution of the Leu5 carboxylate with amides (NHEt, NMe2, NCyPr) reduced ß-arrestin recruitment efficacy through both the δ-opioid and µ-opioid, while retaining affinity and cAMP potency. For this series, computational studies suggest key ligand-receptor interactions that might influence bias. These findings should enable the discovery of a range of tool compounds with previously unexplored biased µ/δ opioid agonist pharmacological profiles.

3.
Molecules ; 24(24)2019 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-31842282

RESUMEN

As tool compounds to study cardiac ischemia, the endogenous δ-opioid receptors (δOR) agonist Leu5-enkephalin and the more metabolically stable synthetic peptide (d-Ala2, d-Leu5)-enkephalin are frequently employed. However, both peptides have similar pharmacological profiles that restrict detailed investigation of the cellular mechanism of the δOR's protective role during ischemic events. Thus, a need remains for δOR peptides with improved selectivity and unique signaling properties for investigating the specific roles for δOR signaling in cardiac ischemia. To this end, we explored substitution at the Phe4 position of Leu5-enkephalin for its ability to modulate receptor function and selectivity. Peptides were assessed for their affinity to bind to δORs and µ-opioid receptors (µORs) and potency to inhibit cAMP signaling and to recruit ß-arrestin 2. Additionally, peptide stability was measured in rat plasma. Substitution of the meta-position of Phe4 of Leu5-enkephalin provided high-affinity ligands with varying levels of selectivity and bias at both the δOR and µOR and improved peptide stability, while substitution with picoline derivatives produced lower-affinity ligands with G protein biases at both receptors. Overall, these favorable substitutions at the meta-position of Phe4 may be combined with other modifications to Leu5-enkephalin to deliver improved agonists with finely tuned potency, selectivity, bias and drug-like properties.


Asunto(s)
Encefalina Leucina/farmacología , Receptores Opioides delta/metabolismo , Receptores Opioides mu/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Células CHO , Cricetulus , Encefalina Leucina/genética , Humanos , Fenilalanina , Receptores Opioides delta/agonistas , Receptores Opioides delta/genética , Receptores Opioides mu/agonistas , Receptores Opioides mu/genética , Transducción de Señal/genética
4.
Front Pharmacol ; 10: 407, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31057409

RESUMEN

Between 2000 and 2005 several studies revealed that morphine is more potent and exhibits fewer side effects in beta-arrestin 2 knockout mice. These findings spurred efforts to develop opioids that signal primarily via G protein activation and do not, or only very weakly, recruit beta-arrestin. Development of such molecules targeting the mu opioid receptor initially outpaced those targeting the kappa, delta and nociceptin opioid receptors, with the G protein-biased mu opioid agonist oliceridine/TRV130 having completed phase III clinical trials with improved therapeutic window to treat moderate-to-severe acute pain. Recently however, there has been a sharp increase in the development of novel G protein-biased kappa agonists. It is hypothesized that G protein-biased kappa agonists can reduce pain and itch, but exhibit fewer side effects, such as anhedonia and psychosis, that have thus far limited the clinical development of unbiased kappa opioid agonists. Here we summarize recently discovered G protein-biased kappa agonists, comparing structures, degree of signal bias and preclinical effects. We specifically reviewed nalfurafine, 22-thiocyanatosalvinorin A (RB-64), mesyl-salvinorin B, 2-(4-(furan-2-ylmethyl)-5-((4-methyl-3-(trifluoromethyl)benzyl)thio)-4H-1,2,4-triazol-3-yl)pyridine (triazole 1.1), 3-(2-((cyclopropylmethyl)(phenethyl)amino)ethyl)phenol (HS666), N-n-butyl-N-phenylethyl-N-3-hydroxyphenylethyl-amine (compound 5/BPHA), 6-guanidinonaltrindole (6'GNTI), and collybolide. These agonists encompass a variety of chemical scaffolds and range in both their potency and efficacy in terms of G protein signaling and beta-arrestin recruitment. Thus unsurprisingly, the behavioral responses reported for these agonists are not uniform. Yet, it is our conclusion that the kappa opioid field will benefit tremendously from future studies that compare several biased agonists and correlate the degree of signaling bias to a particular pharmacological response.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...