Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 275: 116254, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38547729

RESUMEN

Heavy metal exposure leads to multiple system dysfunctions. The mechanisms are likely multifactorial and involve inflammation and oxidative stress. The aim of this study was to evaluate markers and risk factors for atherosclerosis in the LDL receptor knockout mouse model chronically exposed to inorganic mercury (Hg) in the drinking water. Results revealed that Hg exposed mice present increased plasma levels of cholesterol, without alterations in glucose. As a major source and target of oxidants, we evaluated mitochondrial function. We found that liver mitochondria from Hg treated mice show worse respiratory control, lower oxidative phosphorylation efficiency and increased H2O2 release. In addition, Hg induced mitochondrial membrane permeability transition. Erythrocytes from Hg treated mice showed a 50% reduction in their ability to take up oxygen, lower levels of reduced glutathione (GSH) and of antioxidant enzymes (SOD, catalase and GPx). The Hg treatment disturbed immune system cells counting and function. While lymphocytes were reduced, monocytes, eosinophils and neutrophils were increased. Peritoneal macrophages from Hg treated mice showed increased phagocytic activity. Hg exposed mice tissues present metal impregnation and parenchymal architecture alterations. In agreement, increased systemic markers of liver and kidney dysfunction were observed. Plasma, liver and kidney oxidative damage indicators (MDA and carbonyl) were increased while GSH and thiol groups were diminished by Hg exposure. Importantly, atherosclerotic lesion size in the aorta root of Hg exposed mice were larger than in controls. In conclusion, in vivo chronic exposure to Hg worsens the hypercholesterolemia, impairs mitochondrial bioenergetics and redox function, alters immune cells profile and function, causes several tissues oxidative damage and accelerates atherosclerosis development.


Asunto(s)
Aterosclerosis , Hipercolesterolemia , Mercurio , Animales , Ratones , Aterosclerosis/inducido químicamente , Peróxido de Hidrógeno , Enfermedades Renales , Mercurio/toxicidad , Ratones Noqueados , Estrés Oxidativo/fisiología , Receptores de LDL/genética
2.
J Trace Elem Med Biol ; 83: 127399, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38325180

RESUMEN

BACKGROUND: Thimerosal (TM) is a toxic, organometallic mercury compound (which releases ethyl-mercury-containing compounds in aqueous solutions) used as a preservative in vaccines. Mitochondria are organelle which are highly vulnerable to many chemical compounds, including mercury (Hg) and its derivatives. METHOD: Wistar rats (at 21 days of age) were used to model a child's TM exposure following childhood vaccination, divided in two groups: TM exposed (20 µg/kg/day) and unexposed controls (saline solution), both for 24 h. Atomic Fluorescence Spectrometry was used to quantify the amounts of mercury in tissues. The electron transport chain (ETC) from isolated mitochondria was evaluated using an oxygen electrode. The mitochondrial membrane potential and H2O2 production were analyzed using selective fluorescence probes. The activity of some enzymes (SOD, CAT, GPx, and AChE) and secondary markers of oxidative stress (GSH, GSSG, total free thiol) were also examined in tissues. RESULTS: Hg accumulation in the brain and liver was higher in exposed animals when compared to the control. Liver-isolated mitochondria showed that TM improved respiratory control by 23%; however, states 3 and 4 of the ETC presented a decrease of 16% and 37%, respectively. Furthermore, brain-isolated mitochondria presented an improvement of 61% in respiratory control. Brain enzyme activities were significantly impacted in TM-exposed rats compared to unexposed rats as follows: decreases in SOD (32%) and AChE (42%) and increases in GPx (79%) and CAT (100%). GPx enzyme activity in the liver was significantly increased (37%). Among secondary oxidative stress markers, the brain's total reduced thiol (SH) concentration was significantly increased (41%). CONCLUSION: Acute TM treatment exposure in a Wistar rat model mimicking TM exposure in an infant following childhood vaccination significantly damaged brain bioenergetic pathways. This study supports the ability of TM exposure to preferentially damage the nervous system.


Asunto(s)
Compuestos de Etilmercurio , Compuestos de Mercurio , Mercurio , Humanos , Niño , Lactante , Ratas , Animales , Mercurio/toxicidad , Mercurio/metabolismo , Timerosal/farmacología , Peróxido de Hidrógeno/metabolismo , Ratas Wistar , Mitocondrias/metabolismo , Superóxido Dismutasa , Compuestos de Sulfhidrilo
3.
Mar Pollut Bull ; 198: 115842, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38039579

RESUMEN

This work reports assessing risks to human health resulting from mercury levels in sardines (Sardinella brasiliensis), which have been highly consumed by the low-income population from Salvador, Brazil. Mercury was determined using the Direct Mercury Analysis (DMA) in fifty-one commercially acquired samples in seventeen neighborhoods. The mercury content on a wet basis ranged from 0.023 to 0.083 µg g-1 for an average value of 0.039 µg g-1. The estimated weekly intake (EWI), target hazard quotient (THQ), and maximum safe consuming quantity (MSCQ) were used in the toxicological assessment, and all these indices denoted that this food does not pose any risks to the human health of the population that consumes it. The development of this work was very significant because most sardines sold in Salvador originate from Todos os Santos Bay, which has a history of mercury contamination.


Asunto(s)
Mercurio , Animales , Humanos , Mercurio/análisis , Brasil , Monitoreo del Ambiente , Contaminación de Alimentos/análisis , Medición de Riesgo , Peces
4.
Food Chem ; 381: 132194, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35101706

RESUMEN

Matrix complexity of fruit juices and their low antimony level requires sensitive, cost-effective instruments, time-consuming and error-prone sample pretreatment methods. Therefore, a flow-batch procedure (HG-FBA-AFS) was developed for the fast and sensitive determination of total inorganic Sb in grape juice samples by hydride generation atomic fluorescence spectrometry. The sample pretreatment, pre-reduction and stibine formation steps run through the mixing chamber. The HCl and NaBH4 concentrations, and carrier gas flowrate were optimized through a Box-Behnken design. The detection limit (LOD) was 20 ng L-1, intra and inter-day precision ranged in 3.0 - 3.5 %, and low errors within (- 2.4 to 6.6 %) for samples containing 1.23 - 4.58 µg L-1 total Sb. Both HG-FBA-AFS and reference method agreed at 95% confidence level. An 87 h-1 sample throughput, and a 1.15 mL total waste per determination attest that HG-FBA-AFS is a fast, and ecofriendly tool for determining Sb in grape juices.


Asunto(s)
Antimonio , Vitis , Antimonio/análisis , Jugos de Frutas y Vegetales/análisis , Espectrometría de Fluorescencia/métodos , Espectrofotometría Atómica
5.
Talanta ; 207: 119834, 2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31594561

RESUMEN

In this paper, a flow-batch analysis (FBA) system, hydride generation (HG), and atomic fluorescence spectrometry (AFS) are coupled for the first time to develop a fast and sensitive FBA-HG-AFS method for automated inorganic antimony speciation in waters, whether from the sea, mineral water, tap water, or lakes. Unlike previous automated flow methods that use confluent fluids and complex devices, the main advantage of the proposed FBA-HG-AFS method is an innovative use of a simple laboratory made flow-batch chamber to simultaneously perform mixing, homogenization, reactions, antimony hydride formation, and gas-liquid separation. The FBA-HG-AFS method was optimized using two-level full factorial and Box-Behnken designs, and validated on the basis of real repeated measurements and analysis of variance, yielding a satisfactory working range (100-2000 ng L-1), precision (RSD = 4%), sensitivity, and limit of detection (6 ng L-1) for the water samples analyzed. Accuracy was evaluated by recovery tests and analysis of a standard reference material (SRM 1643e) of trace elements in water (NIST, USA), resulting in recovery rates of from 90 to 114%, and relative error = 0.7%. The high sampling throughput (54 speciations h-1), together with low waste generation, low costs, low reagent and sample consumption make this FBA-HG-AFS method an interesting proposal for fast large-scale analysis in routine laboratoy according to the principles of green analytical chemistry.

6.
Talanta ; 178: 384-391, 2018 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-29136838

RESUMEN

A lab-made magnetic-mechanical robotic (MMR) system coupled to a flow-batch analyzer (FBA) for magnetic nanoparticles solid phase extraction (MSPE) is presented. As an illustrative application, an NMR-FBA couple was connected to a graphite furnace atomic absorption spectrometer (GFAAS) for quantification of trace cadmium in edible oils. Factors affecting MSPE, such as the amount of adsorbent, the type, concentration and volume of the eluent and elution time were studied. Under the optimized experimental conditions, the interferents studied did not reveal a significant change in the analytical response, indicating that proposed method is selective. The sampling rate, characteristic mass, working linear range, limits of detection (LOD), and sensitivity were 10h-1, 0.18pg, 0.05-1.0µgkg-1, 0.006µgL-1, and 0.4197, respectively. An enrichment factor of 9 was achieved using a 2.5mL oil sample. In order to evaluate the accuracy, a certified reference material was analyzed by the proposed and a reference method. The values obtained were compared with the one provided from the manufacturer and no statistically significant differences were observed among three values at a confidence level of 95% using paired t-test. In addition, the precision intra-day and inter day of the proposed method and the robustness were assessed and again no statistically significant differences were observed at a confidence level of 95%. The use of a microcolumn to immobilize the MNPs is not needed with the proposed MMR-FBA-GFAAS system, thus avoiding the well-known problem of non-uniform packing of the MNPs presented in previous flow-based automatic methods. Despite a high organic load of edible oils, the method developed is simple, robust and presents satisfactory analytical features when compared with others that have been reported in the literature, suggesting that it is a potentially useful alternative to determine trace analytes in viscous matrices without external pretreatment.


Asunto(s)
Cadmio/análisis , Grafito/química , Nanopartículas de Magnetita/química , Aceites/química , Robótica , Extracción en Fase Sólida/instrumentación , Espectrofotometría Atómica/métodos , Óxido de Aluminio/química , Cadmio/química , Cadmio/aislamiento & purificación , Contaminación de Alimentos/análisis , Límite de Detección , Naftoles/química , Dodecil Sulfato de Sodio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...