Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 16(19): 9412-9425, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38650478

RESUMEN

Nanotechnology has the potential to provide formulations of antitumor agents with increased selectivity towards cancer tissue thereby decreasing systemic toxicity. This in vivo study evaluated the potential of novel nanoformulation based on poly(lactic-co-glycolic acid) (PLGA) to reduce the cardiotoxic potential of doxorubicin (DOX). In vivo toxicity of PLGADOX was compared with clinically approved non-PEGylated, liposomal nanoformulation of DOX (LipoDOX) and conventional DOX form (ConvDOX). The study was performed using Wistar Han rats of both sexes that were treated intravenously for 28 days with 5 doses of tested substances at intervals of 5 days. Histopathological analyses of heart tissues showed the presence of myofiber necrosis, degeneration processes, myocytolysis, and hemorrhage after treatment with ConvDOX, whereas only myofiber degeneration and hemorrhage were present after the treatment with nanoformulations. All DOX formulations caused an increase in the troponin T with the greatest increase caused by convDOX. qPCR analyses revealed an increase in the expression of inflammatory markers IL-6 and IL-8 after ConvDOX and an increase in IL-8 expression after lipoDOX treatments. The mass spectra imaging (MSI) of heart tissue indicates numerous metabolic and lipidomic changes caused by ConvDOX, while less severe cardiac damages were found after treatment with nanoformulations. In the case of LipoDOX, autophagy and apoptosis were still detectable, whereas PLGADOX induced only detectable mitochondrial toxicity. Cardiotoxic effects were frequently sex-related with the greater risk of cardiotoxicity observed mostly in male rats.


Asunto(s)
Cardiotoxicidad , Doxorrubicina , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Ratas Wistar , Doxorrubicina/química , Doxorrubicina/farmacología , Doxorrubicina/análogos & derivados , Animales , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Ratas , Masculino , Cardiotoxicidad/prevención & control , Femenino , Apoptosis/efectos de los fármacos , Nanopartículas/química , Miocardio/patología , Miocardio/metabolismo , Polietilenglicoles/química , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacología , Corazón/efectos de los fármacos , Liposomas/química
2.
RSC Adv ; 13(25): 17384-17397, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37304776

RESUMEN

The precipitation of calcium phosphates (CaPs) in the presence of more than one type of additive is of interest both from a fundamental point of view and as a possible biomimetic route for the preparation of multicomponent composites in which the activity of the components is preserved. In this study, the effect of bovine serum albumin (BSA) and chitosan (Chi) on the precipitation of CaPs in the presence of silver nanoparticles (AgNPs) stabilized with sodium bis(2-ethylhexyl)sulfosuccinate (AOT-AgNPs), poly(vinylpyrrolidone) (PVP-AgNPs), and citrate (cit-AgNPs) was investigated. In the control system, the precipitation of CaPs occurred in two steps. Amorphous calcium phosphate (ACP) was the first precipitated solid, which transformed into a mixture of calcium-deficient hydroxyapatite (CaDHA) and a smaller amount of octacalcium phosphate (OCP) after 60 min of ageing. Both biomacromolecules inhibited ACP transformation, with Chi being a stronger inhibitor due to its flexible molecular structure. As the concentration of the biomacromolecules increased, the amount of OCP decreased both in the absence and presence of AgNPs. In the presence of cit-AgNPs and two highest BSA concentrations, a change in the composition of the crystalline phase was observed. Calcium hydrogen phosphate dihydrate was formed in the mixture with CaDHA. An effect on the morphology of both the amorphous and crystalline phases was observed. The effect depended on the specific combination of biomacromolecules and differently stabilized AgNP. The results obtained suggest a simple method for fine-tuning the properties of precipitates using different classes of additives. This could be of interest for the biomimetic preparation of multifunctional composites for bone tissue engineering.

3.
Materials (Basel) ; 16(5)2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36902880

RESUMEN

Calcium phosphates (CaPs) composites with silver nanoparticles (AgNPs) attract attention as a possible alternative to conventional approaches to combating orthopedic implant-associated infections. Although precipitation of calcium phosphates at room temperatures was pointed out as an advantageous method for the preparation of various CaP-based biomaterials, to the best of our knowledge, no such study exists for the preparation of CaPs/AgNP composites. Motivated by this lack of data in this study we investigated the influence of AgNPs stabilized with citrate (cit-AgNPs), poly(vinylpyrrolidone) (PVP-AgNPs), and sodium bis(2-ethylhexyl) sulfosuccinate (AOT-AgNPs) in the concentration range 5-25 mg dm-3 on the precipitation of CaPs. The first solid phase to precipitate in the investigated precipitation system was amorphous calcium phosphate (ACP). The effect of AgNPs on ACP stability was significant only in the presence of the highest concentration of AOT-AgNPs. However, in all precipitation systems containing AgNPs, the morphology of ACP was affected, as gel-like precipitates formed in addition to the typical chain-like aggregates of spherical particles. The exact effect depended on the type of AgNPs. After 60 min of reaction time, a mixture of calcium-deficient hydroxyapatite (CaDHA) and a smaller amount of octacalcium phosphate (OCP) formed. PXRD and EPR data point out that the amount of formed OCP decreases with increasing AgNPs concentration. The obtained results showed that AgNPs can modify the precipitation of CaPs and that CaPs properties can be fine-tuned by the choice of stabilizing agent. Furthermore, it was shown that precipitation can be used as a simple and fast method for CaP/AgNPs composites preparation which is of special interest for biomaterials preparation.

4.
J Appl Toxicol ; 43(3): 416-430, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36065485

RESUMEN

Silver nanoparticles (AgNPs) show a plethora of possible applications due to their antimicrobial properties. Different coatings of AgNPs are used in order to increase stability, availability, and activity. However, the question about the toxicity after prolonged exposure still remains. Here, we show that different surface coatings affect in vitro toxicity and internalization of AgNPs in porcine kidney (PK15) cells. AgNPs coated with cetyltrimethylammonium bromide (CTAB), poly(vinylpyrrolidone) (PVP), sodium bis(2-ethylhexyl)-sulfosuccinate (AOT), poly-L-lysine (PLL), and bovine serum albumin (BSA) were toxic at the concentration of 10 mg Ag/L and higher. The toxicity increased in the following manner: PVP-AgNPs < CTAB-AgNPs < PLL-AgNPs < AOT-AgNPs < BSA-AgNPs. All types of AgNPs were internalized by the PK15 cells in a dose-dependent manner with greater internalization of AgNPs bearing positive surface charge. Transmission electron microscopy (TEM) experiments showed that AgNPs were located in the lysosomal compartments, while the co-treatment with known inhibitors of endocytosis pathways suggested macropinocytosis as the preferred internalization pathway. When inside the cell, all types of AgNPs induced the formation of reactive oxygen species while decreasing the concentration of the cell's endogenous antioxidant glutathione. The comet assay indicated possible genotoxicity of tested AgNPs starting at the concentration of 2 mg Ag/L or higher, depending on the surface functionalization. This study demonstrates the toxicity of AgNPs pointing to the importance of biosafety evaluation when developing novel AgNPs-containing materials.


Asunto(s)
Nanopartículas del Metal , Plata , Animales , Porcinos , Plata/toxicidad , Plata/metabolismo , Nanopartículas del Metal/toxicidad , Cetrimonio , Tamaño de la Partícula , Endocitosis , Riñón/metabolismo , Mamíferos/metabolismo
5.
Analyst ; 147(14): 3201-3208, 2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-35699493

RESUMEN

Administration of cytotoxic agents like doxorubicin (DOX) is restrained by the effects on different non-targeted/non-cancerous tissues, which instigates the development of nano-enabled drug delivery systems, among others. In this study, imaging mass spectrometry (IMS) was selected to examine the effects of DOX nanoformulations on non-targeted tissues. Chemical alterations induced by liposomal (LPS) and poly (lactic-co-glycolic acid) (PLG) nanoformulations were assessed against the ones induced by the conventional (CNV) formulation. Kidney cryosections of the treated and control Wistar rats were used as a model of the non-targeted tissue and analyzed by MALDI TOF IMS in the 200-1000 Da m/z range. Principal component analysis (PCA) and Volcano plots of the average mass spectra demonstrated a large overlap between treatments. However, the Venn diagram of significant m/z values revealed a nanoformulation-specific fingerprint consisting of 59 m/z values, which set them apart from the CNV formulation characterized by the fingerprint of 22 significant m/z values. Fingerprint m/z values that were putatively annotated by metabolome database search were linked to apoptosis, cell migration and proliferation. In CNV and PLG cases, false discovery rate adjusted ANOVA showed no differences in the spatial distribution of fingerprint m/z values between the histological substructures like glomeruli and convoluted tubules indicating their tissue-nonselective effect. LPS caused the least significant changes in m/z values and some of the LPS-specific fingerprint m/z values were primarily distributed in the glomeruli. The IMS based procedure successfully differentiated the effects of DOX formulations on the model non-targeted tissue, thus indicating the importance of IMS in effective drug development.


Asunto(s)
Lipopolisacáridos , Neoplasias , Animales , Doxorrubicina/química , Doxorrubicina/farmacología , Liposomas , Espectrometría de Masas , Ratas , Ratas Wistar , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
6.
Part Fibre Toxicol ; 18(1): 38, 2021 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-34663357

RESUMEN

BACKGROUND: Silver nanoparticles (AgNPs) are widely used in biomedicine due to their strong antimicrobial, antifungal, and antiviral activities. Concerns about their possible negative impacts on human and environmental health directed many researchers towards the assessment of the safety and toxicity of AgNPs in both in vitro and in vivo settings. A growing body of scientific information confirms that the biodistribution of AgNPs and their toxic effects vary depending on the particle size, coating, and dose as well as on the route of administration and duration of exposure. This study aimed to clarify the sex-related differences in the outcomes of oral 28 days repeated dose exposure to AgNPs. METHODS: Wistar rats of both sexes were gavaged daily using low doses (0.1 and 1 mg Ag/kg b.w.) of polyvinylpyrrolidone (PVP)-coated small-sized (10 nm) AgNPs. After exposure, blood and organs of all rats were analysed through biodistribution and accumulation of Ag, whereas the state of the liver and kidneys was evaluated by the levels of reactive oxygen species (ROS) and glutathione (GSH), catalase (CAT) activity, superoxide dismutase (SOD) and glutathione peroxidase (GPx), expression of metallothionein (Mt) genes and levels of Mt proteins. RESULTS: In all animals, changes in oxidative stress markers and blood parameters were observed indicating the toxicity of AgNPs applied orally even at low doses. Sex-related differences were noticed in all assessed parameters. While female rats eliminated AgNPs from the liver and kidneys more efficiently than males when treated with low doses, the opposite was observed for animals treated with higher doses of AgNPs. Female Wistar rats exposed to 1 mg PVP-coated AgNPs/kg b.w. accumulated two to three times more silver in the blood, liver, kidney and hearth than males, while the accumulation in most organs of digestive tract was more than ten times higher compared to males. Oxidative stress responses in the organs of males, except the liver of males treated with high doses, were less intense than in the organs of females. However, both Mt genes and Mt protein expression were significantly reduced after treatment in the liver and kidneys of males, while they remained unchanged in females. CONCLUSIONS: Observed toxicity effects of AgNPs in Wistar rats revealed sex-related differences in response to an oral 28 days repeated exposure.


Asunto(s)
Nanopartículas del Metal , Povidona , Animales , Femenino , Masculino , Nanopartículas del Metal/toxicidad , Polivinilos , Povidona/toxicidad , Ratas , Ratas Wistar , Plata/toxicidad , Distribución Tisular
7.
J Inorg Biochem ; 224: 111565, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34411938

RESUMEN

Despite increasing use of silver nanoparticles (AgNPs) in different medicinal products, knowledge about their effects on hemostasis and platelets functionality is still scarce. Published scientific reports provide neither data on oxidative stress response of platelets to AgNPs nor information about the effects of AgNPs physicochemical properties on functionality and activation of platelets. This study aimed to explore the role of AgNPs surface functionalization on cell viability, particle uptake, oxidative stress response, and activation of platelets. Small sized, spherical AgNPs were surface functionalized by negatively charged sodium bis(2-ethylhexyl) sulphosuccinate (AOT), neutral polymer polyvinylpyrrolidone (PVP), positively charged polymer poly-l-lysine (PLL) and bovine serum albumin (BSA). Platelet viability, activation and particle uptake were evaluated by flow cytometry. Oxidative stress response was evaluated by measuring the levels of intracellular glutathione (GSH), peroxy and superoxide radicals using assays based on fluorescence dies. Cytotoxicity and uptake of AgNPs to platelets were found to be dose-dependent in a following order PLL-AgNP >> > BSA-AgNP > AOT-AgNP > PVP-AgNP. Particle internalization was further confirmed by transmission electron microscopy. Treatment of platelets with AgNPs induced superoxide radical formation, depletion of GSH and hyperpolarization of the mitochondrial membrane. Small, but statistically significant increase of P-selectin expression in cells treated with all AgNPs compared to non-treated controls evidenced AgNPs-induced activation of platelets. Increased PAC-1 expression was found only in platelets treated with PLL-AgNPs. Obtained results demonstrate that different surface decoration of AgNPs determines their biological effects on platelets highlighting the importance of careful design of AgNPs-based medicinal products regarding their biocompatibility and functionality.


Asunto(s)
Plaquetas/metabolismo , Nanopartículas del Metal/química , Plata/química , Plata/farmacología , Animales , Supervivencia Celular/efectos de los fármacos , Citometría de Flujo/métodos , Glutatión/metabolismo , Humanos , Microscopía Electrónica de Transmisión/métodos , Membranas Mitocondriales/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Selectina-P/metabolismo , Activación Plaquetaria/efectos de los fármacos , Povidona/química , Albúmina Sérica Bovina/química
8.
Nanomaterials (Basel) ; 11(6)2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-34207588

RESUMEN

The constantly growing need for advanced bone regeneration materials has motivated the development of calcium phosphates (CaPs) composites with a different metal or metal-oxide nanomaterials and their economical and environmentally friendly production. Here, two procedures for the synthesis of CaPs composites with TiO2 nanoplates (TiNPl) and nanowires (TiNWs) were tested, with the immersion of TiO2 nanomaterials (TiNMs) in corrected simulated body fluid (c-SBF) and precipitation of CaP in the presence of TiNMs. The materials obtained were analyzed by powder X-ray diffraction, spectroscopic and microscopic techniques, Brunauer-Emmett-Teller surface area analysis, thermogravimetric analysis, dynamic and electrophoretic light scattering, and their hemocompatibility and ability to induce reactive oxygen species were evaluated. After 28 days of immersion in c-SBF, no significant CaP coating was formed on TiNMs. However, the composites with calcium-deficient apatite (CaDHA) were obtained after one hour in the spontaneous precipitation system. In the absence of TiNMs, CaDHA was also formed, indicating that control of the CaP phase formed can be accomplished by fine-tuning conditions in the precipitation system. Although the morphology and size of crystalline domains of CaDHA obtained on the different nanomaterials differed, no significant difference was detected in their local structure. Composites showed low reactive oxygen species (ROS) production and did not induce hemolysis. The results obtained indicate that precipitation is a suitable and fast method for the preparation of CaPs/TiNMs nanocomposites which shows great potential for biomedical applications.

9.
Beilstein J Nanotechnol ; 12: 665-679, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34327112

RESUMEN

The exploitation of silver nanoparticles (AgNPs) in biomedicine represents more than one third of their overall application. Despite their wide use and significant amount of scientific data on their effects on biological systems, detailed insight into their in vivo fate is still lacking. This study aimed to elucidate the biotransformation patterns of AgNPs following oral administration. Colloidal stability, biochemical transformation, dissolution, and degradation behaviour of different types of AgNPs were evaluated in systems modelled to represent biological environments relevant for oral administration, as well as in cell culture media and tissue compartments obtained from animal models. A multimethod approach was employed by implementing light scattering (dynamic and electrophoretic) techniques, spectroscopy (UV-vis, atomic absorption, nuclear magnetic resonance) and transmission electron microscopy. The obtained results demonstrated that AgNPs may transform very quickly during their journey through different biological conditions. They are able to degrade to an ionic form and again reconstruct to a nanoparticulate form, depending on the biological environment determined by specific body compartments. As suggested for other inorganic nanoparticles by other research groups, AgNPs fail to preserve their specific integrity in in vivo settings.

10.
NanoImpact ; 23: 100340, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-35559841

RESUMEN

Silver nanoparticles (AgNPs) are among the most commercialized nanomaterials in biomedicine due to their antimicrobial and anti-inflammatory properties. Nevertheless, possible health hazards of exposure to AgNPs are yet to be understood and therefore raise public concern in regards of their safety. In this study, sex-related differences, role of steroidal hormones and influence of two different surface stabilizing agents (polymer vs. protein) on distribution and adverse effects of AgNPs were investigated in vivo. Intact and gonadectomised male and female mice were treated with seven AgNPs doses administered intraperitoneally during 21 days. After treatment, steroid hormone levels in serum, accumulation of Ag levels and oxidative stress biomarkers in liver, kidneys, brain and lungs were determined. Sex-related differences were observed in almost all tissues. Concentration of Ag was significantly higher in the liver of females compared to males. No significant difference was found for AgNP accumulation in lungs between females and males, while the lungs of intact males showed significantly higher Ag accumulation compared to gonadectomised group. Effect of surface coating was also observed, as Ag accumulation was significantly higher in kidneys and liver of intact females, as well as in kidneys and brain of intact males treated with protein-coated AgNPs compared to polymeric AgNPs. Oxidative stress response to AgNPs was the most pronounced in kidneys where protein-coated AgNPs induced stronger effects compared to polymeric AgNPs. Interestingly, protein-coated AgNPs reduced generation of reactive oxygen species in brains of females and gonadectomised males. Although there were no significant differences in levels of hormones in the AgNP-exposed animals compared to controls, sex-related differences in oxidative stress parameters were observed in all organs. Results of this study highlight the importance of including the sex-related differences and effects of protein corona in biosafety evaluation of AgNPs exposure.


Asunto(s)
Nanopartículas del Metal , Plata , Animales , Femenino , Hormonas/farmacología , Masculino , Nanopartículas del Metal/toxicidad , Ratones , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Plata/farmacología
11.
Chem Biol Interact ; 335: 109364, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33359597

RESUMEN

Metallic nanoparticles are an important and widely used materials in development of nano-enabled medicine. For that reason, their interaction with biological molecules has to be systematically examined, as use of nanoparticles can lead to altered biological functions. In this study, we evaluated the interaction between silver nanoparticles (AgNPs) and two important plasma transport proteins - albumin and α-1-acid glycoprotein. To investigate comprehensively how different physico-chemical properties impact interaction of proteins with nanosurface, AgNPs of different size, shape and surface coating was prepared. The study was conducted using UV-Vis absorption, fluorescence, inductively coupled plasma mass spectrometry, circular dichroism spectroscopy, transmission electron microscopy, dynamic and electrophoretic light scattering techniques. The results showed significant complexities of the nano-bio interface and binding affinities of proteins onto surface of different AgNPs, which were affected by both AgNPs and protein properties. The most significant role on AgNPs-protein interaction had the coating agents used for AgNPs surface stabilization. Our findings should improve safe-by-design approach to development of the metallic nanomaterials for medical use.


Asunto(s)
Nanopartículas del Metal/química , Orosomucoide/metabolismo , Albúmina Sérica Bovina/metabolismo , Animales , Bovinos , Orosomucoide/química , Tamaño de la Partícula , Polímeros/química , Unión Proteica , Conformación Proteica/efectos de los fármacos , Albúmina Sérica Bovina/química , Plata/química , Tensoactivos/química
12.
Microorganisms ; 8(10)2020 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-33036147

RESUMEN

Francisella tularensis is a highly virulent intracellular pathogen that proliferates within various cell types and can infect a multitude of animal species. Francisella escapes the phagosome rapidly after infection and reaches the host cell cytosol where bacteria undergo extensive replication. Once cytosolic, Francisella becomes a target of an autophagy-mediated process. The mechanisms by which autophagy plays a role in replication of this cytosolic pathogen have not been fully elucidated. In vitro, F. tularensis avoids degradation via autophagy and the autophagy process provides nutrients that support its intracellular replication, but the role of autophagy in vivo is unknown. Here, we investigated the role of autophagy in the pathogenesis of tularemia by using transgenic mice deficient in Atg5 in the myeloid lineage. The infection of Atg5-deficient mice with Francisella tularensis subsp. holarctica live vaccine strain (LVS) resulted in increased survival, significantly reduced bacterial burden in the mouse organs, and less severe histopathological changes in the spleen, liver and lung tissues. The data highlight the contribution of Atg5 in the pathogenesis of tularemia in vivo.

13.
Microorganisms ; 8(9)2020 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-32825290

RESUMEN

Francisella tularensis is a highly infectious, intracellular bacterium and it is the causative agent of tularemia. The bacterium has been isolated from more than 250 species, including protozoa. Previous studies have shown that the growth of Legionella pneumophila within the amoeba results in a dramatic increase in the resistance to disinfectants. Since Francisella persists in the environment for years, this study investigates whether Acanthamoeba castellanii-grown F. novicida exhibits an alteration in the resistance to disinfectants. The disinfectants used are didecyldimethylammonium chloride (DDAC) combined with isopropyl alcohol (D1), benzalkonium chloride combined with DDAC and formic acid (D2), and polyhexamethylene biguanide (PHMB, D3). The effect of disinfectants on the bacterial viability is determined by a colony-forming unit (CFU), by transmission electron microscopy (TEM), by fluorescence microscopy, and the damage of the bacterial membrane. Our data has shown that only a one-log10 loss in bacterial viability is exhibited upon treatment of agar-grown Francisella, while in amoeba-grown Francisella there was a three-log10 difference with D3. The D1 disinfectant sterilized the bacteria within 10 s. The treatment of agar-grown F. novicida with D2 reduces bacterial viability by seven-log10 within 10 s and 15 min, respectively. Surprisingly, the treatment of amoeba-grown F. novicida with D2 results in a total loss of bacterial viability. In conclusion, A. castellanii-grown F. novicida is more susceptible to many disinfectants.

14.
Food Chem Toxicol ; 136: 110935, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31693913

RESUMEN

Silver nanoparticles (AgNPs) represent one of the most abundant biocidal nanomaterials contained in more than 30% of nano-enabled consumer products and 75% of nanomedical products. The cumulative exposure of the general population may therefore reach critical and potentially hazardous levels. Due to data gaps on AgNP effects in humans, it is urgent to further evaluate their possible toxicity, particularly in vulnerable systems like the nervous one. As AgNPs may cross the blood brain and placental barriers, this study evaluated the in vitro effect of different AgNPs on neuronal precursor cells. For this purpose, 10 nm-sized AgNPs were stabilized with five different coating agents rendering a neutral, positive and negative surface charge. Murine neural stem cells (mNSCs) were used as cellular model to test AgNP neurotoxicity by evaluating the range of toxicity endpoints including cellular viability, apoptosis induction, oxidative stress response, cellular and mitochondrial membrane damages, DNA damage, inflammation response, and neural stem cell regulation. Our results clearly showed that the neurotoxic potential of AgNPs was not dependent on their surface charge or coating agents used for their surface stabilization. All AgNP types exhibited significant toxicity in neuronal precursor cells at an in vitro dose of 5 mg Ag/L or lower.


Asunto(s)
Nanopartículas del Metal/toxicidad , Células-Madre Neurales/efectos de los fármacos , Plata/toxicidad , Animales , Apoptosis/efectos de los fármacos , Bovinos , Supervivencia Celular/efectos de los fármacos , Cetrimonio/química , Cetrimonio/toxicidad , Daño del ADN/efectos de los fármacos , Ácido Dioctil Sulfosuccínico/química , Ácido Dioctil Sulfosuccínico/toxicidad , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones Endogámicos C57BL , Estrés Oxidativo/efectos de los fármacos , Polilisina/química , Polilisina/toxicidad , Povidona/química , Povidona/toxicidad , Albúmina Sérica Bovina/química , Albúmina Sérica Bovina/toxicidad , Plata/química , Transcriptoma/efectos de los fármacos
15.
J Phys Chem B ; 120(49): 12557-12567, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27973815

RESUMEN

Phase transitions in mixtures of imidazolium based ionic liquid ([C12mim]Br) and anionic double tail surfactant, sodium bis(2-ethylhexyl) sulfosuccinate (AOT), were studied using a multitechnique approach. The system was primarily chosen for its expected ability to form a variety of lamellar and nonlamellar liquid crystalline phases which can transform into each other via different mechanisms. Depending on the bulk composition and total surfactant concentration, mixed micelles, coacervates, and lamellar and inverse bicontinuous cubic liquid crystalline phase were observed. Along with electrostatic attractions and geometric packing constraints, additional noncovalent interactions (hydrogen bonding, π-π stacking) enhanced attractive interactions and stabilized low curvature aggregates. At stoichiometric conditions, coexistence of coacervates and vesicles was found at lower, while bicontinuous cubic phase and vesicles were present at higher total surfactant concentrations. The phase transitions from a dispersed lamellar to inverse cubic bicontinuous phase occur as a consequence of charge shielding and closer packing of oppositely charged headgroups followed by a change in bilayer curvature. Transition is continuous with both phases coexisting over a relatively broad range of concentrations and very likely involves a sponge-like phase as a structural intermediate. To the best of our knowledge, this type of phase transition has not been observed before in surface active ionic liquid/surfactant mixtures.

16.
Beilstein J Nanotechnol ; 7: 246-62, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26977382

RESUMEN

Silver (AgNPs) and maghemite, i.e., superparamagnetic iron oxide nanoparticles (SPIONs) are promising candidates for new medical applications, which implies the need for strict information regarding their physicochemical characteristics and behavior in a biological environment. The currently developed AgNPs and SPIONs encompass a myriad of sizes and surface coatings, which affect NPs properties and may improve their biocompatibility. This study is aimed to evaluate the effects of surface coating on colloidal stability and behavior of AgNPs and SPIONs in modelled biological environments using dynamic and electrophoretic light scattering techniques, as well as transmission electron microscopy to visualize the behavior of the NP. Three dispersion media were investigated: ultrapure water (UW), biological cell culture medium without addition of protein (BM), and BM supplemented with common serum protein (BMP). The obtained results showed that different coating agents on AgNPs and SPIONs produced different stabilities in the same biological media. The combination of negative charge and high adsorption strength of coating agents proved to be important for achieving good stability of metallic NPs in electrolyte-rich fluids. Most importantly, the presence of proteins provided colloidal stabilization to metallic NPs in biological fluids regardless of their chemical composition, surface structure and surface charge. In addition, an assessment of AgNP and SPION behavior in real biological fluids, rat whole blood (WhBl) and blood plasma (BlPl), revealed that the composition of a biological medium is crucial for the colloidal stability and type of metallic NP transformation. Our results highlight the importance of physicochemical characterization and stability evaluation of metallic NPs in a variety of biological systems including as many NP properties as possible.

17.
Environ Toxicol ; 31(6): 679-92, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25448069

RESUMEN

Scientific information on the potential harmful effects of silver nanoparticles (AgNPs) on human health severely lags behind their exponentially growing applications in consumer products. In assessing the toxic risk of AgNP usage, liver, as a detoxifying organ, is particularly important. The aim of this study was to explore the toxicity mechanisms of nano and ionic forms of silver on human hepatoblastoma (HepG2) cells. The results showed that silver ions and citrate-coated AgNPs reduced cell viability in a dose-dependent manner. The IC50 values of silver ions and citrate-coated AgNPs were 0.5 and 50 mg L(-1) , respectively. The LDH leakage and inhibition of albumin synthesis, along with decreased ALT activity, indicated that treatment with either AgNP or Ag ions resulted in membrane damage and reduced the cell function of human liver cells. Evaluation of oxidative stress markers demonstrating depletion of GSH, increased ROS production, and increased SOD activity, indicated that oxidative stress might contribute to the toxicity effects of nano and ionic forms of silver. The observed toxic effect of AgNP on HepG2 cells was substantially weaker than that caused by ionic silver, while the uptake of nano and ionic forms of silver by HepG2 cells was nearly the same. © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 679-692, 2016.


Asunto(s)
Albúminas/metabolismo , Nanopartículas del Metal/toxicidad , Estrés Oxidativo/efectos de los fármacos , Plata/toxicidad , Supervivencia Celular/efectos de los fármacos , Células Hep G2 , Humanos , Iones/toxicidad
18.
Mol Cell Neurosci ; 67: 104-15, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26101075

RESUMEN

STAM2 (signal transducing adaptor molecule 2), a subunit of the ESCRT-0 complex, is an endosomal protein acting as a regulator of receptor signaling and trafficking. To analyze STAM2 in the nervous system, its gene expression and protein localization in the mouse brain were identified using three methods: mRNA in situ hybridization, immunohistochemistry, and via lacZ reporter in frame with Stam2 gene using the gene trap mouse line Stam2(Gt1Gaj). STAM2 intracellular localization was analyzed by subcellular fractionation and co-immunofluorescence using confocal microscopy. Stam2 was strongly expressed in the cerebral and cerebellar cortex, hippocampal formation, olfactory bulb, and medial habenula. The majority of STAM2-positive cells co-stained with the neuronal markers. In neurons STAM2 was found in the early endosomes and also in the nucleus. The other members of the ESCRT-0 complex co-localized with STAM2 in the cytoplasm, but they were not present in the nucleus. The newly identified neuron-specific nuclear localization of STAM2, together with its high expression in the brain indicated that STAM2 might have a specific function in the mouse nervous system.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Neuronas/metabolismo , Fosfoproteínas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Núcleo Celular/metabolismo , Células Cultivadas , Cerebelo/metabolismo , Citoplasma/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Hipocampo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Bulbo Olfatorio/metabolismo , Especificidad de Órganos , Fosfoproteínas/genética , Transporte de Proteínas
19.
Gene ; 570(1): 132-40, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26071188

RESUMEN

Krüppel-like transcription factor 8 (KLF8) is a transcription factor suggested to be involved in various cellular events, including malignant cell transformation, still its expression in the adult rodent brain remained unknown. To analyze Klf8 in the mouse brain and to identify cell types expressing it, a specific transgenic Klf8(Gt1Gaj) mouse was used. The resulting Klf8 gene-driven ß-galactosidase activity was visualized by X-gal histochemical staining of the brain sections. The obtained results were complemented by in situ RNA hybridization and immunohistochemistry. Klf8 was highly expressed throughout the adult mouse brain gray matter including the cerebral cortex, hippocampus, olfactory bulb, hypothalamus, pallidum, and striatum, but not in the cerebellum. Immunofluorescent double-labeling revealed that KLF8-immunoreactive cells were neurons, and the staining was located in their nucleus. This was the first study showing that Klf8 was highly expressed in various regions of the mouse brain and in particular in the neurons, where it was localized in the cell nuclei.


Asunto(s)
Encéfalo/metabolismo , Neuronas/metabolismo , Factores de Transcripción/metabolismo , Animales , Encéfalo/citología , Núcleo Celular/metabolismo , Expresión Génica , Factores de Transcripción de Tipo Kruppel , Ratones Endogámicos C57BL , Ratones Transgénicos , Especificidad de Órganos , Factores de Transcripción/genética
20.
J Neural Transm (Vienna) ; 122(4): 577-92, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25808906

RESUMEN

Sporadic Alzheimer's disease (sAD) is the most common form of dementia. Rats injected intracerebroventricularly with streptozotocin (STZ-icv) develop insulin-resistant brain state and represent a non-transgenic sAD model with a number of AD-like cognitive and neurochemical features. We explored cognitive, structural and ultrastructural changes in the brain of the STZ-icv rat model over a course of 9 months. Cognitive functions were measured in the STZ-icv- (0.3, 1 and 3 mg/kg) and age-matched control rats by passive avoidance test. Structural changes were assessed by Nissl and Bielschowsky silver staining. Immunohistochemistry and electron microscopy analysis were used to detect amyloid ß- (Aß(1-42)) and hyperphosphorylated tau (AT8) accumulation and ultrastructural changes in the brain. Memory decline was time- (≤3 months/acute, ≥3 months/progressive) and STZ-icv dose-dependent. Morphological changes were manifested as thinning of parietal cortex (≥1 month) and corpus callosum (9 months), and were more pronounced in the 3 mg/kg STZ group. Early neurofibrillary changes (AT8) were detected from 1 month onward in the neocortex, and progressed after 3 months to the hippocampus. Intracellular Aß(1-42) accumulation was found in the neocortex at 3 months following STZ-icv treatment, while diffuse Aß(1-42)-positive plaque-like formations were found after 6 months in the neocortex and hippocampus. Ultrastructural changes revealed enlargement of Golgi apparatus, pyknotic nuclei, and time-dependent increase in lysosome size, number, and density. Our data provide a staging of cognitive, structural/ultrastructural, and neuropathological markers in the STZ-icv rat model that in many aspects seems to be generally comparable to stages seen in human sAD.


Asunto(s)
Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/psicología , Encéfalo/patología , Trastornos del Conocimiento/patología , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Reacción de Prevención , Encéfalo/metabolismo , Trastornos del Conocimiento/etiología , Trastornos del Conocimiento/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Relación Dosis-Respuesta a Droga , Inmunohistoquímica , Filamentos Intermedios/metabolismo , Espacio Intracelular/metabolismo , Masculino , Microscopía Electrónica , Neuronas/metabolismo , Neuronas/patología , Fragmentos de Péptidos/metabolismo , Fosforilación , Placa Amiloide/metabolismo , Placa Amiloide/patología , Ratas Wistar , Estreptozocina , Proteínas tau/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...